• Title/Summary/Keyword: Microstructure development

Search Result 664, Processing Time 0.024 seconds

Metallurgical study of bronze bells excavated from the Miruksa (temple) site in Iksan (익산 미륵사지 출토 동종의 금속학적 연구)

  • Cho, Nam-chul;Huh, Il-kwon;Kang, Hyung-tae
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.5-22
    • /
    • 2006
  • Mireuksa is a temple that was established in the Baekjea Period and continued around to the 16thcentury. The sites of the temple throughout diverse periods such as the United Shilla Period, KoryuPeriod, and Chosun Period including the one of the early temple in the late Baekjea Period were discovered. In those temple sites, there were lots of diverse artifacts discovered including artifacts in the Bronze Age. In this study, the compositions of four bronze bells excavated from Mireuksa site in Iksan were analyzed and the manufacturing technique of bronze bells was studied through the observation of microstructure. Also, the analytical cases of ancient bronze bells were collected and compared. Furthermore, the provenance study of the bronze bells site was attempted with the Pbisotope ratio. The results aim to offer crucial keys for discovering the aspect of society as well as information about the origin, development, and the route of propagation of ancient technologies. Bronze bell No. 1 showed an unexpected composition as Cu was found 98.5% in it. There were shown twins which were created by annealing and an even phase in the fine grains. It was also shown that bronze bell No. 2 and 4 had a high content of Pb although they showed a similar composition with general bronze bells in terms of Sn content. As shown in the analysis characteristics table of Korean bronze bell of this study, the ancient bronze bell used Pb of which content was limited to 2.12% in general, however, the results showed 15.5% and 13.2% respectively, which is an excessive amount. Asa result of analyzing inclusion in the microstructure of bronze bell No. 2, it was found that sulfide group mineral was used since there appeared S(14.55%). Also, it was proven that $CuFeS_2$ or$Cu_5FeS_4$ was used as a raw material because there was a small amount of Fe. As a result of analyzing inclusion of bronze bell No. 4, the bronze bell sample contained S(13.43%) and it is thought that sulfide group mineral was used, however, it had no Fe. Therefore, it is not connected to $CuFeS_2$ which is the main mineral of Korea. In addition, a strain line was shown with processing in bronze bell No. 2 and 4. As a result of provenance study of bronze bell No. 2 and 4 using the Pb isotope ratio, they or their raw materials are estimated to come from the southern China. Bronze bell No. 3 showed only Cu and Sn, and it is featured with a relatively low amount of Sn(6.63%). The microstructure has only phase, andintergranular corrosion was highly in progress.

  • PDF

A Study on the Solubility of Nb in Zr-0.8Sn Alloy by Thermoelectric Power Measurement (TEP 측정방법을 이용한 Zr-0.8Sn 합금의 Nb 고용도에 관한 연구)

  • Oh, Yeong-Min;Jeong, Heung-Sik;Jeong, Yong-Hwan;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.453-459
    • /
    • 2001
  • It is important for the fabrication of nuclear cladding to optimize the microstructure, because the properties of Zr-based nuclear claddings such as mechanical properties, oxidation-resistance and corrosion- resistance vary widely with its microstructure. The microstructure in Zr-based alloy is strongly dependent on the solubility of alloying element. However, it is very difficult to measure the solubility due to the low solution limit of alloying elements in Zr-based alloy. In this study, Thermoelectric Power(TEP) measurements are used to determine the solubility of Nb in Zr-0.8Sn alloy, which is confirmed by optical microscopy and transmission electron microscopy. The solutioning of Nb obtained by a homogenization treatment and water-quench leads to a decrease of TEP The saturation of TEP appears with the increase of homogenization temperature, which means the saturation of the Nb content in the matrix. From these results, the solubility ($C_{Nb}$) of Nb in Zr-0.8Sn with temperature could be expressed as fellow equation : $4.69097{\times}10^{16}{\times}e^{-25300\times\;I/T}$(ppm.at.%)

  • PDF

Effects of $Nd_2O_3$ and $TiO_2$ Addition on the Microstructures and Microwave Dielectric Properties of $BaO-Nd_2O_3-TiO_2$ System

  • Kim, Tea-Hong;Park, Jung-Rae;Lee, Suk-Jin;Sung, Hee-Kyung;Lee, Sang-Seok;Choy, Tae-Goo
    • ETRI Journal
    • /
    • v.18 no.1
    • /
    • pp.15-27
    • /
    • 1996
  • The effects of $Nd_2O_3$ and $TiO_2$ addition on the microstructures and microwave dielectic properties of $BaO-Nd_2O_3-TiO_2$ system were investigated. $BaNd_2Ti_4O_{12}$ or $BaNd_2Ti_{5}O_{14}$ phases were observed for compositions based on BaO/$Nd_2O_3$ = 1 ratio. The compositions deviated from $BaO/Nd_2O_3=1$ ratio were composed of major phases of $BaNd_2Ti_4O_{12}$ or $BaNd_2Ti_5O_{14}$, and the compound of $Nd_2O_3$ and $TiO_2(Nd_2Ti_2O_7)$ or that of BaO and $TiO_2(BaTi_4O_9)$. The microstructure of ceramic with $BaO{\cdot}Nd_2O_3{\cdot}4TiO_2$ composition varied from spherical grains to needlelike grains with increasing sintering temperature. With increasing $Nd_2O_3$, the optimum sintering temperature with maximum density increased, and the dielectric constant(${\varepsilon}_r$) and quality factor(Q) decreased due to the formation of secondary phases. With increasing $TiO_2$, the optimum sintering temperature and the dielectric constant decreased with increased Q value. And the temperature coefficient of resonant frequency, ${\tau}_f$ shifted toward positive direction. The dielectric ceramics with $BaO/Nd_2O_3=1$ showed Q values of above 2000 and dielectric constants of above 80 at 3GHz.

  • PDF

A Study on the Reduction Mechanism of Tungsten and Copper Oxide Composite Powders (W-Cu산화물 복합분말의 환원 기구에 관한 연구)

  • Lee, Seong;Hong, Moon-Hee;Kim, Eun-Pyo;Lee, Sung-Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.422-429
    • /
    • 2003
  • The reduction mechanism of the composite powders mixed with $WO_3$ and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20$0^{\circ}C$ to 30$0^{\circ}C$. Then, $WO_3$ powder is reduced to W $O_2$ via W $O_{2.9}$ and W $O_{2.72}$ at higher temperature region. Finally, the gaseous phase of $WO_3(OH)_2$ formed by reaction of $WO_2$ with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and $WO_3$ powder.

Effect of Induction Hardening on Mechanical Properties in Gas Nitrocarburized SM35C Steel (가스 침질탄화처리한 SM3SG강의 기계적 성질에 미치는 고주파퀜칭의 영향)

  • Kim, H.S.;Lee, K.B.;Yu, C.H.;Kim, H.T.;Jang, H.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.224-230
    • /
    • 2000
  • Garbon steel(SM35C) was gas nitrocarburized at $580^{\circ}C$ in $55%N_2-40%NH_3-5%CO_2$ mixed gas atmosphere, and then the steel was induction hardened at $850^{\circ}C$. The microstructure of gas nitrocarburized surface layer was observed by optical microscope and SEM. The phase analysis was carried out by X-ray diffraction method. The mechanical properties of gas nitrocarburized SM35C steel was evaluated by hardness, wear and fatigue test. The thickness of compound and diffusion layer were increased with increasing the gas nitrocarburizing time and the densest compound layer was obtained at 3 hours gas nitrocarburizing time. In case of 15sec induction hardening after gas nitrocarburizing, the surface hardness was decreased from 800Hv to 630Hv owing to the decomposition of compound layer, but wear resistance was increased because of increased hardness of diffusion layer. The fatigue strength of induction hardened steel after gas nitrocarburizing, $58kgf/mm^2$, was higher than $41.5kg/mm^2$ of gas nitrocarburized steel and $45kg/mm^2$ of induction hardened steel, respectively.

  • PDF

Mechanical Properties and Biocompatibility of Ti-Nb-Zr-Mo-CPP Biomaterial Fabricated by Spark Plasma Sintering (스파크플라즈마 소결에 의한 Ti-Nb-Zr-Mo-CPP 생체복합재의 기계적 성질 및 생체적합성)

  • Woo, Kee Do;Kim, Sang Mi;Kim, Dong Gun;Kim, Dae Young;Kang, Dong Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2013
  • The Ti-6Al-4V extra low interstitial (ELI) alloy has been widely used as an orthopedic implant material because of its excellent mechanical properties and biocompatibility. However, it still has many problems, including a high elastic modulus and toxicity of the Al and V elements. Therefore, non-toxic biomaterials with a low elastic modulus need to be developed. A high energy mechanical milling (HEMM) process is introduced to improve the effect of sintering. Rapid sintering of spark plasma sintering (SPS) under pressure was used to make an ultra fine grain of Ti-25 wt.%Nb-7 wt.%Zr-10 wt.%Mo-(10 wt.%CPP) composites with bio-attractive elements for increasing strength. These composites were fabricated by SPS at $1000^{\circ}C$ at 60 MPa using HEMM powders. During the sintering process, $CaTiO_3$, TixOy, and CaO were formed because of the reaction between Ti and CPP. The effects of CPP content on the physical and mechanical properties of the sintered Ti-Nb-Zr-Mo-CPP composites were investigated. The biocompatibility and corrosion resistance of the Ti-Nb-Zr-Mo alloys were improved by the addition of CPP.

Corrosion of Selected Materials in Boiling Sulfuric Acid for the Nuclear Power Industries

  • Kim, Dong-Jin;Lee, Han Hee;Kwon, Hyuk Chul;Kim, Hong Pyo;Hwang, Seong Sik
    • Corrosion Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.37-43
    • /
    • 2007
  • Iodine sulfur (IS) process is one of the promising processes for a hydrogen production by using a high temperature heat generated by a very high temperature gas cooled reactor(VHTR) in the nuclear power industries. Even though the IS process is very efficient for a hydrogen production and it is not accompanied by a carbon dioxide evolution, the highly corrosive environment of the process limits its application in the industry. Corrosion tests of selected materials were performed in sulfuric acid to select appropriate materials compatible with the IS process. The materials used in this work were Fe-Cr alloys, Fe-Ni-Cr alloys, Fe-Si alloys, Ni base alloys, Ta, Ti, Zr, SiC, Fe-Si, etc. The test environments were 50 wt% sulfuric acid at $120^{\circ}C$ and 98 wt% at $320^{\circ}C$. Corrosion rates were measured by using a weight change after an immersion. The surface morphologies and cross sectional areas of the corroded materials were examined by using SEM equipped with EDS. Corrosion behaviors of the materials were discussed in terms of the chemical composition of the materials, a weight loss, the corrosion morphology, the precipitates in the microstructure and the surface layer composition.

Low-Molecular-Weight Collagen Peptide Ameliorates Osteoarthritis Progression through Promoting Extracellular Matrix Synthesis by Chondrocytes in a Rabbit Anterior Cruciate Ligament Transection Model

  • Lee, Mun-Hoe;Kim, Hyeong-Min;Chung, Hee-Chul;Kim, Do-Un;Lee, Jin-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.10
    • /
    • pp.1401-1408
    • /
    • 2021
  • This study examined whether the oral administration of low-molecular-weight collagen peptide (LMCP) containing 3% Gly-Pro-Hyp with >15% tripeptide (Gly-X-Y) content could ameliorate osteoarthritis (OA) progression using a rabbit anterior cruciate ligament transection (ACLT) model of induced OA and chondrocytes isolated from a patient with OA. Oral LMCP administration (100 or 200 mg/kg/day) for 12 weeks ameliorated cartilage damage and reduced the loss of proteoglycan compared to the findings in the ACLT control group, resulting in dose-dependent (p < 0.05) improvements of the OARSI score in hematoxylin & eosin (H&E) and Safranin O staining. In micro-computed tomography analysis, LMCP also significantly (p < 0.05) suppressed the deterioration of the microstructure in tibial subchondral bone during OA progression. The elevation of IL-1β and IL-6 concentrations in synovial fluid following OA induction was dose-dependently (p < 0.05) reduced by LMCP treatment. Furthermore, immunohistochemistry illustrated that LMCP significantly (p < 0.05) upregulated type II collagen and downregulated matrix metalloproteinase-13 in cartilage tissue. Consistent with the in vivo results, LMCP significantly (p < 0.05) increased the mRNA expression of COL2A1 and ACAN in chondrocytes isolated from a patient with OA regardless of the conditions for IL-1β induction. These findings suggest that LMCP has potential as a therapeutic treatment for OA that stimulates cartilage regeneration.

Effect of Thermomechanical Process on Mechanical Property and Microstructure of 9Cr-1Mo Steel (열간가공이 9Cr-1Mo강의 기계적 성질과 미세조직에 미치는 영향)

  • Kim, Jun-Hwan;Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Na, Kwang-Su;Kim, Seong-Ju
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.621-628
    • /
    • 2009
  • Thermomechanical processes were carried out to evaluate their effects on the mechanical and the microstructural property of a ferritic-martensitic steel. Modified 9Cr-1Mo steels were hot-rolled at a temperature of either $780^{\circ}C$ or $850^{\circ}C$ after normalizing at $1050^{\circ}C$ and then were air-cooled. Continuous annealing at $850^{\circ}C$ for 2 hours immediately after the hot rolling was also performed and they were compared to the specimens without thermomechanical process. The result showed that there were little differences between the hot rolled specimens in terms of the precipitation density and size. However, V content inside the MX precipitates increased in the case of the specimen rolled at $850^{\circ}C$. The application of the continuous annealing induced coarsening of the Nb-rich MX precipitation as well as an increase in the amount of V-rich MX precipitation, which is expected to enhance high temperature mechanical properties of the ferritic-martensitic steel.

Microstructural and Mechanical Properties of Ta-bearing 9%Cr Ferritic/Martensitic Steels (탄탈륨 함유 9%Cr 페라이트/마르텐사이트 강의 미세조직 및 기계적 특성)

  • Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Hahn, Dohee
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.209-216
    • /
    • 2009
  • It was evaluated that the microstructural and mechanical properties of Ta-bearing 9Cr-0.5Mo-2W ferritic/martensitic experimental steels. All the experimental steels showed the tempered martensitic microstructures, and $M_{23}C_6$ carbides, whose sizes were ranged from 200 to 300 nm, were easily observed at both boundaries of the prior austenite grain and the martensite lath. In addition, a relatively large Nb-rich MX carbonitrides were intermittently detected at the prior austenite grain boundaries, whereas a lot of Vrich MX carbonitrides, whose mean diameter was less than 50 nm, were observed randomly at both boundaries. Ta was mainly incorporated into the V-rich MX carbonitrides rather than the Nb-rich ones and their content was spanned from 5 to 20 at.%. Ta contents within the MX precipitates also increased as the content of Ta increased. Because the Ta addition into the steels would be attributed to the precipitation strengthening, solid solution strengthening and lath width reduction, it was shown that the mechanical properties, including hardness, tensile strength and creep rate of the 9%Cr-0.5Mo-2W steels were improved by the increase of Ta content. Especially, 9Cr-0.5Mo-2W-0.3V-0.05Nb-0.14Ta steel was revealed to be relatively excellent in the application for the SFR fuel cladding.