• Title/Summary/Keyword: Microstructure development

Search Result 655, Processing Time 0.056 seconds

Development of High-strength, High-temperature Nb-Si-Ti Alloys through Mechanical Alloying (기계적 합금화를 통한 고강도-고내열 Nb-Si-Ti계 합금 개발에 관한 연구)

  • Jung-Joon Kim;Sang-Min Yoon;Deok-Hyun Han;Jongmin Byun;Young-Kyun Kim
    • Journal of Powder Materials
    • /
    • v.31 no.1
    • /
    • pp.30-36
    • /
    • 2024
  • The aerospace and power generation industries have an increasing demand for high-temperature, high-strength materials. However, conventional materials typically lack sufficient fracture toughness and oxidation resistance at high temperatures. This study aims to enhance the high-temperature properties of Nb-Si-Ti alloys through ball milling. To analyze the effects of milling time, the progression of alloying is evaluated on the basis of XRD patterns and the microstructure of alloy powders. Spark plasma sintering (SPS) is employed to produce compacts, with thermodynamic modeling assisting in predicting phase fractions and sintering temperature ranges. The changes in the microstructure and variation in the mechanical properties due to the adjustment of the sintering temperature provide insights into the influence of Nb solid solution, Nb5Si3, and crystallite size within the compacts. By investigating the changes in the mechanical properties through strengthening mechanisms, such as precipitation strengthening, solid solution strengthening, and crystallite refinement, this study aims to verify the applicability of Nb-Si-Ti alloys in advanced material systems.

Sintering and Electrical Properties According to Sb/Bi Ratio(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(II) : ZnO-Bi2O3-Sb2O3-Co3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.682-688
    • /
    • 2012
  • In this study we aimed to examine the co-doping effects of 1/6 mol% $Co_3O_4$ and 1/4 mol% $Cr_2O_3$ (Co:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and the grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Co,Cr-doped ZBS, ZBS(CoCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ were formed in all systems. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 by Cr rather than Co. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(CoCr), the varistor characteristics were improved (non-linear coefficient, ${\alpha}$ = 20~63), and seemed to form ${Zn_i}^{{\cdot}{\cdot}}$(0.20 eV) and ${V_o}^{\cdot}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy, the grain boundaries were found to be composed of an electrically single barrier (0.94~1.1 eV) that is, however, somewhat sensitive to ambient oxygen with temperature. The phase development, densification, and microstructure were controlled by Cr rather than by Co but the electrical and grain boundary properties were controlled by Co rather than by Cr.

Effects of Sintering Temperature and SiC Contents on the Microstructure and Superconducting Properties of In-situ $MgB_2$ Wires (In-situ $MgB_2$ 선재의 소결온도와 SiC 함량에 따른 미세조직 및 초전도 특성 연구)

  • Hwang, Soo-Min;Park, Eui-Cheol;Park, Si-Hong;Jang, Seok-Hern;Kim, Kyu-Tae;Lim, Jun-Hyung;Joo, Jin-Ho;Kang, Won-Nam;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.9 no.1
    • /
    • pp.68-73
    • /
    • 2007
  • We fabricated the in-situ $MgB_2$ wires using the powder-in-tube method and investigated the effects of sintering temperature and SiC contents on the microstructure and superconducting properties. Pure $MgB_2$ wires and 5, 10, 20 wt.% SiC doped $MgB_2$ wires were sintered at $600-1000^{\circ}C$ for 30 minutes in Ar atmosphere. We found that $MgB_2$ phase was mostly formed at the sintering temperature of $700^{\circ}C$ and above, and the critical temperature ($T_c$) increased with increasing sintering temperature. For the $MgB_2$ sintered at $850^{\circ}C$, the highest critical current density ($J_c$) was obtained to be $3.7{\times}10^5\;A/cm^2$ at 5 K and 1.6 T by a magnetic properties measurement system (MPMS). The addition of SiC to the $MgB_2$ wires changed microstructure and critical properties. SEM observation showed that the $MgB_2$ core had considerable micro-cracks in undoped wire and the density of micro-cracks decreased with increasing SiC contents. The critical temperature decreased as the SiC contents increased, on the other hand, the critical current density of SiC doped $MgB_2$ wires in high magnetic field was enhanced compared to that of undoped $MgB_2$ wires.

  • PDF

1D deformation induced permeability and microstructural anisotropy of Ariake clays

  • Chai, Jinchun;Jia, Rui;Nie, Jixiang;Aiga, Kosuke;Negami, Takehito;Hino, Takenori
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.81-95
    • /
    • 2015
  • The permeability behavior of Ariake clays has been investigated by constant rate of strain (CRS) consolidation tests with vertical or radial drainage. Three types of Ariake clays, namely undisturbed Ariake clay samples from the Saga plain, Japan (aged Ariake clay), clay deposit in shallow seabed of the Ariake Sea (young Ariake clay) and reconstituted Ariake clay samples using the soil sampled from the Saga plain, were tested. The test results indicate that the deduced permeability in the horizontal direction ($k_h$) is generally larger than that in the vertical direction ($k_v$). Under odometer condition, the permeability ratio ($k_h/k_v$) increases with the vertical strain. It is also found that the development of the permeability anisotropy is influenced by the inter-particle bonds and clay content of the sample. The aged Ariake clay has stronger initial inter-particle bonds than the young and reconstituted Ariake clays, resulting in slower increase of $k_h/k_v$ with the vertical strain. The young Ariake clay has higher clay content than the reconstituted Ariake clay, resulting in higher values of $k_h/k_v$. The microstructure of the samples before and after the consolidation test has been examined qualitatively by scanning electron microscopy (SEM) image and semi-quantitatively by mercury intrusion porosimetry (MIP) tests. The SEM images indicate that there are more cut edges of platy clay particles on a vertical plane (with respect to the deposition direction) and there are more faces of platy clay particles on a horizontal plane. This tendency increases with the increase of one-dimensional (1D) deformation. MIP test results show that using a sample with a larger vertical surface area has a larger cumulative intruded pore volume, i.e., mercury can be intruded into the sample more easily from the horizontal direction (vertical plane) under the same pressure. Therefore, the permeability anisotropy of Ariake clays is the result of the anisotropic microstructure of the clay samples.

Microstructure and mechanical properties in hot-forged liquid-phase-sintered silicon carbide (고온단조에 의한 액상소결 탄화규소의 미세구조 및 기계적 특성)

  • Roh, Myong-Hoon;Kim, Won-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.1943-1948
    • /
    • 2010
  • Two kind of $\beta$-SiC powders of different particle sizes (${\sim}1.7\;{\mu}m$ and ${\sim}30\;nm$), containing 7 wt% $Y_2O_3$, 2 wt% $Al_2O_3$ and 1 wt% MgO as sintering additives, were prepared by hot pressing at $1800^{\circ}C$ for 1 h under applied pressures, and then were hot-forged at $1950^{\circ}C$ for 6 h under 40 MPa in argon. All the hot-pressed specimens consisted of equiaxed grains and were developed grain growth after hot-forging. The smaller starting powder was developed the finer microstructure. The microstructures on the surfaces parallel and perpendicular to the pressing direction of the hot-forged SiC were similar to each other, and no texture development was observed because of the lack of massive $\beta$ to $\sigma$ phase transformation of SiC. The fracture toughness (${\sim}3.9\;MPa{\cdot}m^{1/2}$), hardness (~ 25.2 GPa) and flexural strength (480 MPa) of hot-forged SiC using larger starting powder were higher than those of the other.

Metallurgical study of bronze bells excavated from the Miruksa (temple) site in Iksan (익산 미륵사지 출토 동종의 금속학적 연구)

  • Cho, Nam-chul;Huh, Il-kwon;Kang, Hyung-tae
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.5-22
    • /
    • 2006
  • Mireuksa is a temple that was established in the Baekjea Period and continued around to the 16thcentury. The sites of the temple throughout diverse periods such as the United Shilla Period, KoryuPeriod, and Chosun Period including the one of the early temple in the late Baekjea Period were discovered. In those temple sites, there were lots of diverse artifacts discovered including artifacts in the Bronze Age. In this study, the compositions of four bronze bells excavated from Mireuksa site in Iksan were analyzed and the manufacturing technique of bronze bells was studied through the observation of microstructure. Also, the analytical cases of ancient bronze bells were collected and compared. Furthermore, the provenance study of the bronze bells site was attempted with the Pbisotope ratio. The results aim to offer crucial keys for discovering the aspect of society as well as information about the origin, development, and the route of propagation of ancient technologies. Bronze bell No. 1 showed an unexpected composition as Cu was found 98.5% in it. There were shown twins which were created by annealing and an even phase in the fine grains. It was also shown that bronze bell No. 2 and 4 had a high content of Pb although they showed a similar composition with general bronze bells in terms of Sn content. As shown in the analysis characteristics table of Korean bronze bell of this study, the ancient bronze bell used Pb of which content was limited to 2.12% in general, however, the results showed 15.5% and 13.2% respectively, which is an excessive amount. Asa result of analyzing inclusion in the microstructure of bronze bell No. 2, it was found that sulfide group mineral was used since there appeared S(14.55%). Also, it was proven that $CuFeS_2$ or$Cu_5FeS_4$ was used as a raw material because there was a small amount of Fe. As a result of analyzing inclusion of bronze bell No. 4, the bronze bell sample contained S(13.43%) and it is thought that sulfide group mineral was used, however, it had no Fe. Therefore, it is not connected to $CuFeS_2$ which is the main mineral of Korea. In addition, a strain line was shown with processing in bronze bell No. 2 and 4. As a result of provenance study of bronze bell No. 2 and 4 using the Pb isotope ratio, they or their raw materials are estimated to come from the southern China. Bronze bell No. 3 showed only Cu and Sn, and it is featured with a relatively low amount of Sn(6.63%). The microstructure has only phase, andintergranular corrosion was highly in progress.

  • PDF

A Study on the Solubility of Nb in Zr-0.8Sn Alloy by Thermoelectric Power Measurement (TEP 측정방법을 이용한 Zr-0.8Sn 합금의 Nb 고용도에 관한 연구)

  • Oh, Yeong-Min;Jeong, Heung-Sik;Jeong, Yong-Hwan;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.6
    • /
    • pp.453-459
    • /
    • 2001
  • It is important for the fabrication of nuclear cladding to optimize the microstructure, because the properties of Zr-based nuclear claddings such as mechanical properties, oxidation-resistance and corrosion- resistance vary widely with its microstructure. The microstructure in Zr-based alloy is strongly dependent on the solubility of alloying element. However, it is very difficult to measure the solubility due to the low solution limit of alloying elements in Zr-based alloy. In this study, Thermoelectric Power(TEP) measurements are used to determine the solubility of Nb in Zr-0.8Sn alloy, which is confirmed by optical microscopy and transmission electron microscopy. The solutioning of Nb obtained by a homogenization treatment and water-quench leads to a decrease of TEP The saturation of TEP appears with the increase of homogenization temperature, which means the saturation of the Nb content in the matrix. From these results, the solubility ($C_{Nb}$) of Nb in Zr-0.8Sn with temperature could be expressed as fellow equation : $4.69097{\times}10^{16}{\times}e^{-25300\times\;I/T}$(ppm.at.%)

  • PDF

Effects of $Nd_2O_3$ and $TiO_2$ Addition on the Microstructures and Microwave Dielectric Properties of $BaO-Nd_2O_3-TiO_2$ System

  • Kim, Tea-Hong;Park, Jung-Rae;Lee, Suk-Jin;Sung, Hee-Kyung;Lee, Sang-Seok;Choy, Tae-Goo
    • ETRI Journal
    • /
    • v.18 no.1
    • /
    • pp.15-27
    • /
    • 1996
  • The effects of $Nd_2O_3$ and $TiO_2$ addition on the microstructures and microwave dielectic properties of $BaO-Nd_2O_3-TiO_2$ system were investigated. $BaNd_2Ti_4O_{12}$ or $BaNd_2Ti_{5}O_{14}$ phases were observed for compositions based on BaO/$Nd_2O_3$ = 1 ratio. The compositions deviated from $BaO/Nd_2O_3=1$ ratio were composed of major phases of $BaNd_2Ti_4O_{12}$ or $BaNd_2Ti_5O_{14}$, and the compound of $Nd_2O_3$ and $TiO_2(Nd_2Ti_2O_7)$ or that of BaO and $TiO_2(BaTi_4O_9)$. The microstructure of ceramic with $BaO{\cdot}Nd_2O_3{\cdot}4TiO_2$ composition varied from spherical grains to needlelike grains with increasing sintering temperature. With increasing $Nd_2O_3$, the optimum sintering temperature with maximum density increased, and the dielectric constant(${\varepsilon}_r$) and quality factor(Q) decreased due to the formation of secondary phases. With increasing $TiO_2$, the optimum sintering temperature and the dielectric constant decreased with increased Q value. And the temperature coefficient of resonant frequency, ${\tau}_f$ shifted toward positive direction. The dielectric ceramics with $BaO/Nd_2O_3=1$ showed Q values of above 2000 and dielectric constants of above 80 at 3GHz.

  • PDF

A Study on the Reduction Mechanism of Tungsten and Copper Oxide Composite Powders (W-Cu산화물 복합분말의 환원 기구에 관한 연구)

  • Lee, Seong;Hong, Moon-Hee;Kim, Eun-Pyo;Lee, Sung-Ho;Noh, Joon-Woong
    • Journal of Powder Materials
    • /
    • v.10 no.6
    • /
    • pp.422-429
    • /
    • 2003
  • The reduction mechanism of the composite powders mixed with $WO_3$ and CuO has been studied by using thermogravimetry (TG), X-ray diffraction, and microstructure analyses. The composite powders were made by simple Turbula mixing, spray drying, and ball-milling in a stainless steel jar with the ball to powder ratio of 32 to 1 at 80 rpm for 1 h without process controlling agents. It is observed that all the oxide composite powders are converted to W-coated Cu composite powder after reducing treatment under hydrogen atmosphere. For the formation mechanism of W-coated Cu composite powder, the sequential reduction steps are proposed as follows: CuO contained in the ball-milled composite powder is initially reduced to Cu at the temperature range from 20$0^{\circ}C$ to 30$0^{\circ}C$. Then, $WO_3$ powder is reduced to W $O_2$ via W $O_{2.9}$ and W $O_{2.72}$ at higher temperature region. Finally, the gaseous phase of $WO_3(OH)_2$ formed by reaction of $WO_2$ with water vapour migrates to previously reduced Cu and deposits on it as W reduced by hydrogen. The proposed mechanism has been proved through the model experiment which was performed by using Cu plate and $WO_3$ powder.

Effect of Induction Hardening on Mechanical Properties in Gas Nitrocarburized SM35C Steel (가스 침질탄화처리한 SM3SG강의 기계적 성질에 미치는 고주파퀜칭의 영향)

  • Kim, H.S.;Lee, K.B.;Yu, C.H.;Kim, H.T.;Jang, H.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.13 no.4
    • /
    • pp.224-230
    • /
    • 2000
  • Garbon steel(SM35C) was gas nitrocarburized at $580^{\circ}C$ in $55%N_2-40%NH_3-5%CO_2$ mixed gas atmosphere, and then the steel was induction hardened at $850^{\circ}C$. The microstructure of gas nitrocarburized surface layer was observed by optical microscope and SEM. The phase analysis was carried out by X-ray diffraction method. The mechanical properties of gas nitrocarburized SM35C steel was evaluated by hardness, wear and fatigue test. The thickness of compound and diffusion layer were increased with increasing the gas nitrocarburizing time and the densest compound layer was obtained at 3 hours gas nitrocarburizing time. In case of 15sec induction hardening after gas nitrocarburizing, the surface hardness was decreased from 800Hv to 630Hv owing to the decomposition of compound layer, but wear resistance was increased because of increased hardness of diffusion layer. The fatigue strength of induction hardened steel after gas nitrocarburizing, $58kgf/mm^2$, was higher than $41.5kg/mm^2$ of gas nitrocarburized steel and $45kg/mm^2$ of induction hardened steel, respectively.

  • PDF