• Title/Summary/Keyword: Microstructure and mechanical properties

Search Result 2,018, Processing Time 0.03 seconds

Characterization of Microstructure and Mechanical Properties of High-Purity Iron Added with Copper

  • Taguchi, O.;Lee, Su Yeon;Uchikoshi, M.;Isshiki, M.;Lee, Chan Gyu;Suzuki, S.;Gornakov, Vladimir S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.1
    • /
    • pp.22-26
    • /
    • 2012
  • An influence of the addition of copper (0.5, 1.0 and 1.5 mass% Cu) on the microstructure and mechanical properties of high purity iron (99.998 mass%) was characterized. The microstructure and microhardness of high-purity iron based samples, which were rolled at room temperature and subsequently annealed, were investigated in this work. The microstructure of the samples has been observed by electron back scattering diffraction (EBSD) and the mechanical properties have been studied by using micro-Vickers hardness test. The results of microstructural observation showed that deformation band was formed in high purity iron by rolling at room temperature, and it was recovered by annealing up to about 900 K. The microhardness results showed that the softening of high-purity iron occurred by annealing up to about 900 K, while the hardness of iron added with about 0.5-1.5 mass% copper was kept over 100 Hv and at the early time of annealing reached a maximum. The hardness of iron added with a small amount of copper may be attributed to precipitation hardening as well as solution hardening. The orientation of crystal in recrystallized grain was almost same as that of deformed grain.

Consolidation of Al-20wt%Si powder by Magnetic Pulsed Compaction (자기펄스 압축성형 장치를 이용한 Al-20wt%Si 분말성형)

  • Park, H.Y.;Kim, H.S.;Hong, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.459-461
    • /
    • 2009
  • In this research, a new method for consolidation of Al-20wr%Si powders using a magnetic pulsed compaction (MPC) was introduced. A wide Range of experimental studies were carried out to characterize the mechanical properties and microstructure of the MPCed materials by means of SEM, TEM and tensile test. It was found that the effective properties like higher strength and full density were achieved while maintaining a fine microstructure. Consolidated bulk by MPC showed higher density without any crack than that of the general process. With increasing the number of MPC compaction, the density and mechanical properties were also greatly improved.

  • PDF

The Study on the Microstructure and Mechanical Properties of the Nodular Indefinite Chilled Iron Containing Ni (Ni 함유 NICI(Nodular Indefinite Chilled Iron)의 미세조직과 기계적성질에 관한 연구)

  • Baek, Eung-Ryul;Oh, Seok-Jung;Villando, Thursdiyanto
    • Journal of Korea Foundry Society
    • /
    • v.26 no.4
    • /
    • pp.180-183
    • /
    • 2006
  • The effects of adding Ni on microstructure and mechanical properties of Nodular Indefinite Chilled Iron (NICI) were studied. Thermal fatigue, hardness, tensile properties, wear resistance, are very important factors for NICI used for hot working roll and wire rod mill. The results show that addition 4% nickel has changed pearlite to bainite. Bainite matrix is superior to pearlite matrix on wear resistance, hardness and strength and will increase performance lifetime of NICI conventional roll material. Based in the bainitic microstructure, hardness and tensile property increase up to 48 HRc and $72\;kg/mm^2$, respectively.

Mechanical Properties and Microstructure of the Leucite-Reinforced Glass-Ceramics for Dental CAD/CAM

  • Byeon, Seon-Mi;Song, Jae-Joo
    • Journal of dental hygiene science
    • /
    • v.18 no.1
    • /
    • pp.42-49
    • /
    • 2018
  • The computer-aided design/computer-aided manufacturing (CAD/CAM) system was introduced to shorten the production time of all-ceramic restorations and the number of patient visits. Among these types of ceramic for dental CAD/CAM, they have been processed into inlay, onlay, and crown shapes using leucite-reinforced glass-ceramics to improve strength. The purpose of this study was to observe the mechanical properties and microstructure of leucite-reinforced glass-ceramics for dental CAD/CAM. Two types of leucite-reinforced glass-ceramic blocks (IPS Empress CAD, Rosetta BM) were prepared with diameter of 13 mm and thickness of 1 mm. Biaxial flexural testing was conducted using a piston-on-three-ball method at a crosshead speed of 0.5 mm/min. Weibull statistics were used for the analysis of biaxial flexural strength. Fracture toughness was obtained using an indentation fracture method. Specimens were observed by field emission scanning electron microscopy to examine the microstructure of the leucite crystalline phase after acid etching with 0.5% hydrofluoric acid aqueous solution for 1 minute. The results of strength testing showed that IPS Empress CAD had a mean value of $158.1{\pm}8.6MPa$ and Rosetta BM of $172.3{\pm}8.3MPa$. The fracture toughness results showed that IPS Empress CAD had a mean value of $1.28{\pm}0.19MPa{\cdot}m^{1/2}$ and Rosetta BM of $1.38{\pm}0.12MPa{\cdot}m^{1/2}$. The Rosetta BM sample exhibited higher strength and fracture toughness. Moreover, the crystalline phase size and ratio were increased in the Rosetta BM sample. The above results are expected to elucidate the basic mechanical properties and crystal structure characteristics of IPS Empress CAD and Rosetta BM. Additionally, they will help develop leucite-reinforced glass-ceramic materials for CAD/CAM.

Sintering Behavior and Mechanical Property of B4C Ceramics Fabricated by Spark Plasma Sintering (방전플라즈마 소결법에 의한 탄화 붕소 세라믹스의 소결 거동 및 기계적 특성)

  • Kim, Kyoung-Hun;Chae, Jae-Hong;Park, Joo-Seok;Kim, Dae-Keun;Shim, Kwang-Bo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.1
    • /
    • pp.60-64
    • /
    • 2008
  • [ $B_4C$ ] ceramics were fabricated by spark plasma sintering process and their sintering behavior, microstructure and mechanical properties were evaluated. Relative density of $B_4C$ ceramics could be achieved by spark plasma sintering method reached as high as 99% at lower temperature than conventional sintering method, in addition, without any sintering additives. The mechanical properties of $B_4C$ ceramics could be improved by the heat treatment at $1300^{\circ}C$ during sintering process which can be removed $B_2O_3$ phase from a $B_4C$ powder surface. This improvement results from the formation of a fine and homogeneous microstructure because the grain coarsening was suppressed by the elimination of $B_2O_3$ phase. Particularly, mechanical properties of the specimen experienced the $B_2O_3$ removing process improved over 30% compared with the specimen without that process.

Study on The Preparation and Mechanical Properties of Fiberglass Reinforced Wood-Based Composite

  • Zhang, Yang;Ma, Yan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.505-514
    • /
    • 2016
  • To study mechanical properties of fiberglass reinforced wood-based composite (FRWC), fiberglass with a diameter of $20{\mu}m$ was selected to prepare test specimens. Mechanical properties of fiberglass reinforced wood-based composite were determined by three-point-bending test while its microstructure was characterizes by scanning electron microscopy (SEM). The results showed that mechanical properties of fiberglass reinforced wood-based composite were superior to that of the wood fiberboard based on the contrasting mechanical curves and the analysis of fracture mechanism. It is believed that the material design with this "sandwich" structure brings a unique buffering capacity of fiberglass into play in the composites. So the specimen did not produce a sudden fracture failure at high level of applied loads because it had a bearing ability. The SEM analysis showed that the working strength of PVAc adhesive was high; under a bearing force, it could properly transfer a load. In addition, glass fiber mesh and wood fiber board combined well.

Microstructure and Mechanical Properties of High-Strength Low-Carbon Bainitic Steels with Enhanced Deformability (높은 변형능을 갖는 저탄소 베이나이트계 고강도강의 미세조직과 기계적 특성)

  • Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.423-429
    • /
    • 2013
  • Recently, steel structures have increasingly been required to have sufficient deformability because they are subjected to progressive or abrupt displacement arising from structure loading itself, earthquake, and ground movement in their service environment. In this study, high-strength low-carbon bainitic steel specimens with enhanced deformability were fabricated by varying thermo-mechanical control process conditions consisting of controlled rolling and accelerated cooling, and then tensile and Charpy V-notch impact tests were conducted to investigate the correlation between microstructure and mechanical properties such as strength, deformability, and low-temperature toughness. Low-temperature transformation phases, i.e. granular bainite (GB), degenerate upper bainite(DUB), lower bainite(LB) and lath martensite(LM), together with fine polygonal ferrite(PF) were well developed, and the microstructural evolution was more critically affected by start and finish cooling temperatures than by finish rolling temperature. The steel specimens start-cooled at higher temperature had the best combination of strength and deformability because of the appropriate mixture of fine PF and low-temperature transformation phases such as GB, DUB, and LB/LM. On the other hand, the steel specimens start-cooled at lower temperature and finish-cooled at higher temperature exhibited a good low-temperature toughness because the interphase boundaries between the low-temperature transformation phases and/or PF act as beneficial barriers to cleavage crack propagation.

Microstructure and Mechanical Properties of P/M Processed 2XXX Al-${SiC}_{p}$ Composites (분말야금방법으로 제조된 2XXX Al-${SiC}_{p}$ 복합재료의 미세조직과 기계적 성질)

  • 심기삼
    • Journal of Powder Materials
    • /
    • v.4 no.1
    • /
    • pp.26-41
    • /
    • 1997
  • The powder metallurgy (P/M) processed 2009 and 2124 Al composites reinforced with SiC particulates were studied by focusing on the effect of consolidation temperature on the microstructural and mechanical Properties. The mechanical properties such as tensile properties and microhardness of the second phases were analysed in relation to the microstructures observed by a SEM and an optical microscope. The in situ fracture process study using SEM showed that the grain refinement and the removal of manganese-containing particles often observed in the 2124 Al-${SiC}_{p}$ composites were important for the improvement of the mechanical properties. This study offers an optimum consolidation temperature for the control of the manganese-containing particles in the 2124 Al-${SiC}_{p}$ composites that yields mechanical properties higher than those of the 2009 Al-${SiC}_{p}$ composites.

  • PDF

Mechanical and Electrical Properties of Submicrocrystalline Cu-3%Ag Alloy (초미세 결정립 Cu-3%Ag 합금의 기계적/전기적 특성)

  • Ko, Y.G.;Lee, C.W.;NamGung, S.;Lee, D.H.;Shin, D.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.476-481
    • /
    • 2009
  • The present work demonstrates the mechanical and electrical responses of submicrocrystalline Cu-3%Ag alloy as a function of strain imposed by equal channel angular pressing(ECAP). From transmission electron microscope observation, the resulting microstructures of Cu-3%Ag alloy deformed by ECAP for 8-pass or more consist of reasonably fine, equiaxed grains without having a strong preferred orientation, suggesting that microstructure evolution is slower than that of pure-Al and its alloys owing to low stacking fault energy. The results of room temperature tension tests reveal that, as the amount of applied strain increases, the tensile strength of submicrocrystalline Cu-3%Ag alloy increases whereas losing both the ductility and the electrical conductivity. Such phenomenon can be explained based on microstructure featured by the non-equilibrium grain boundaries.