• Title/Summary/Keyword: Microstructure and mechanical properties

Search Result 2,018, Processing Time 0.032 seconds

Microstructure and Mechanical Properties of SiC-BN Composites with Oxynitride Glass

  • Lee, Young-Il;Kim, Young-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.229-233
    • /
    • 2003
  • By using an oxynitride glass as a sintering additive, the effects of BN content on microstructure and mechanical properties of the hot-pressed and subsequently annealed SiC-BN composites were investigated. The microstructures developed were analyzed by image analysis. The morphology of SiC grains was strongly dependent on BN content in the starting composition. The aspect ratio of SiC decreases with increasing BN content and the average diameter of SiC shows a maximum at 5 wt% BN and decreases with increasing BN content in the starting powder. The fracture toughness increased with increasing BN content while the strength decreased with increasing BN content. The strength and fracture toughness of SiC or SiC-TiC composites were strongly dependent on the morphology of SiC grains, but the strength and fracture toughness of SiC-BN composites were strongly dependent on BN content rather than morphology of SiC grains. These results suggest that fracture toughness of SiC ceramics can be tailored by manipulating BN content in the starting composition. Typical fracture toughness and strength of SiC-10 wt% BN composites were 8 MPa$.$m$\^$1/2/ and 445 MPa, respectively.

Microstructure, Crystal Structure and Mechanical Properties of VN Coatings Using Asymmetric Bipolar Pulsed dc Sputtering (비대칭 바이폴라 펄스 스퍼터법으로 증착된 VN 코팅막의 미세구조, 결정구조 및 기계적 특성에 관한 연구)

  • Chun, Sung-Yong;Jeong, Pyeong-Geun
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.5
    • /
    • pp.461-466
    • /
    • 2016
  • Nanocrystalline vanadium nitride (VN) coatings were deposited using asymmetric bipolar pulsed dc sputtering to further understand the influence of the pulsed plasmas on the crystal structure, microstructure and mechanical properties. Properties of VN coatings were investigated with FE-SEM, XRD and nanoindentation. The results show that, with the increasing pulse frequency and decreasing duty cycle, the coating morphology changed from a porous columnar to a dense structure, with finer grains. Asymmetric bipolar pulsed dc sputtered VN coatings showed higher hardness, elastic modulus and residual compressive stress than dc sputtered VN coatings. The results suggest that asymmetric bipolar pulsed dc sputtering technique is very beneficial for the reactive sputtering deposition of VN coatings.

Microscopic analysis of metal matrix composites containing carbon Nanomaterials

  • Daeyoung Kim;Hye Jung Chang;Hyunjoo Choi
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.4.1-4.10
    • /
    • 2020
  • Metallic matrix composites reinforced with carbon nanomaterials continue to attract interest because of their excellent mechanical, thermal, and electrical properties. However, two critical issues have limited their commercialization. Uniform distribution of carbon nanomaterials in metallic matrices is difficult, and the interfaces between the nanomaterials and matrices are weak. Microscope-based analysis was recently used to quantitatively examine these microstructural features and investigate their contributions to the composites' mechanical, thermal, and electrical properties. The impacts of the microstructure on these properties are discussed in the first section of this review. In the second section, the various microscopic techniques used to study the distribution of carbon nanomaterials in metallic matrices and their interfaces are described.

Microstructure analysis of 8 ㎛ electrolytic Cu foil in plane view using EBSD and TEM

  • Myeongjin Kim;Hyun Soon Park
    • Applied Microscopy
    • /
    • v.52
    • /
    • pp.2.1-2.6
    • /
    • 2022
  • With the lightening of the mobile devices, thinning of electrolytic copper foil, which is mainly used as an anode collection of lithium secondary batteries, is needed. As the copper foil becomes ultrathin, mechanical properties such as deterioration of elongation rate and tear phenomenon are occurring, which is closely related to microstructure. However, there is a problem that it is not easy to prepare and observe specimens in the analysis of the microstructure of ultrathin copper foil. In this study, electron backscatter diffraction (EBSD) specimens were fabricated using only mechanical polishing to analyze the microstructure of 8 ㎛ thick electrolytic copper foil in plane view. In addition, EBSD maps and transmission electron microscopy (TEM) images were compared and analyzed to find the optimal cleanup technique for properly correcting errors in EBSD maps.

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Sharma, Ashutosh;Shin, Y.S.;Jung, Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2015
  • Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.

Effects of Excess PbO and Ball-Milling on the Microstructure, Sintering Behavior and Mechanical Properties of PZT Ceramics (과잉 PbO 첨가 및 미분쇄에 의한 PZT 압전세라믹스의 미세구조제어와 소결특성 및 기계적 성질)

  • 전봉관;남효덕;김상태
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.6
    • /
    • pp.726-734
    • /
    • 1995
  • Pb(Zr0.53Ti0.47)O3 (PZT) ceramics having different microstructures were fabricated at low temperatures using calcined PZT powders with addition of excess PbO powder and/or ball milling. The effects of excess PbO and ball milling time on the microstructure, the sintering characteristic, and the mechanical properties of these ceramics were studied. Fine powders with average particle size of 0.38㎛ could be obtained by ball milling with 2.5 mm Ф zirconia balls for 120 hours. By the addition of 2mol% of excess PbO to these powders, it was possible to obtain well-densitified PZT ceramics at low sintering temperature of 980℃. Densification behavior of PZT was affected by the addition of excess PbO powder, while, grain growth was hardly affected by PbO addition. It was observed that Vicker's hardness decreased and fracture toughness increased with the increasing amount of PbO. At 1mol% excess PbO, it was shown that the minimum values of hardness and maximum fracture toughness were achieved. In addition, with increasing sintering time, the fracture toughness decreased and the hardness increased.

  • PDF

Microstructure and Mechanical Properties of Ni-Cr-Mo Based Dental Cast Iron for Porcelain-Fused-to-Metal Firing (도재소부용 Ni-Cr-Mo계 치과용 합금의 미세조직 및 기계적성질)

  • Choi, D.C.
    • Journal of Korea Foundry Society
    • /
    • v.27 no.3
    • /
    • pp.120-125
    • /
    • 2007
  • The microstructure, mechanical properties and melting range of Ni-Cr-Mo based alloys were investigated to develop Be-free Ni-Cr-Mo base dental alloys for Porcelain-Fused-to-Metal Firing(PFM). All as-cast alloys showed dendritic structure. Rockwell hardness of 20Cr7Mo was increased with addition of Si and Ti. On the contrary, it was decreased with addition of Co. The duplex alloying elemental addition such as 3Co + xTi, 2Si + xCo and 2Si + xTi to 20Cr7Mo resulted in much increase of hardness. Rockwell hardness and compressive strength for 20Cr3CoSiTi or 17Cr6CoSiTi alloy that add Si-Ti had similar values compared to the commercial alloys. Melting range for 20Cr3CoSiTi and 17Cr6CoSiTi alloy that add Si-Ti showed similar or lower than commercial alloys. In conclusion, 20Cr3CoSiTi and 17Cr6CoSiTi alloys can be applied for commercial use.

Changes in Microstructure and Mechanical Properties due to Heat Treatment of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca Alloy Sheet Manufactured via Normal Casting and Twin Roll Casting Process (일반주조 및 쌍롤주조 공정으로 제조된 Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca 합금 판재의 열처리에 따른 미세조직 및 기계적 특성 변화)

  • Dong Hwan Eom;No Jin Park
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.359-366
    • /
    • 2023
  • Changes in microstructure and mechanical properties of Mg-1.0Al-1.0Zn-0.2Mn-0.5Ca (AZMX1100) alloy sheet manufactured by normal casting and twin roll casting process, were studied according to process and heat treatment. Non-uniform microstructure was observed in the initial sheet produced through both processes, and in particular, tilted dendrites and shifted central segregation were observed in the twin roll casting sheet. It was homogenized through hot rolling and heat treatment, and heat treated at 350℃ and 400℃ to compare the effect of heat treatment temperature. Both sheets were homogenized by the hot rolling process, and the grain size increased as the heat treatment temperature and time increased. It was confirmed that the grain size, deviation, and distribution of the second phase were finer and more homogenized in the TRC sheet. Accordingly, mechanical properties such as hardness, formability, and tensile strength also showed better values. However, unlike other previously reported AZMX alloy systems, it showed low formability (Erichsen value), which was judged by the influence of Al2Ca present in the microstructure.

Effect of Sintering Variables on the Microstructure and Mechanical Properties of the Gas Pressure Sintered $Si_3N_4$ ($Si_3N_4$ 가스압 소결체의 미세조직과 기계적 성질에 미치는 공정변수의 영향)

  • 박동수;김해두;정중희
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.129-136
    • /
    • 1994
  • Si3N4 with 6w/o Y2O3 and 1.5w/o Al2O3 has been gas pressure sintered and its densification behavior and the effect of the sintering variables on the microstructure and mechanical properties were investigated. Densification rate was higher at temperature below 1775$^{\circ}C$ and between 187$0^{\circ}C$ and 195$0^{\circ}C$ than between 1775$^{\circ}C$ and 187$0^{\circ}C$. The faster densification at temperature between 187$0^{\circ}C$ and 195$0^{\circ}C$ was thought to be due to the increased amount of liquid phase resulting from the increased amount of Si3N4 dissolving in the liquid. $\beta$-Si3N4 and Y-disilicate at temperatures below 1775$^{\circ}C$, and only $\beta$-Si3N4 at 187$0^{\circ}C$ and above were detected by XRD analysis. Three different two-step schedules were employed to obtain sintered body with above 99% theoretical density and to investigate the effect of the sintering variables on the density, the microstructure and the mechanical properties of the sintered body. The sintered density did not change with the heating rate, and the microstructure became coarser as the temperature increased. The strength decreased with the width of $\beta$-Si3N4 grain, while the fracture toughness increased with the square root of it. A ceramic cutting tool made of the sintered body showed an uniform flank wear after the cutting test.

  • PDF

Effect of Applied Pressure on Microstructure and Mechanical Properties for Spark Plasma Sintered Titanium from CP-Ti Powders (CP-Ti 분말로부터 스파크 플라즈마 소결한 타이타늄의 미세구조와 기계적 성질에 미치는 가압력의 영향)

  • Cho, Kyeong-Sik;Song, In-Beom;Kim, Jae;Oh, Myung-Hoon;Hong, Jae-Keun;Park, Nho-Kwang
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.9
    • /
    • pp.678-685
    • /
    • 2011
  • The aim of this study was to determine the effect of applied pressure and sintering temperature on the microstructure and mechanical properties for spark plasma sintering (SPS) from commercial pure titanium (CP-Ti) powders. Spark plasma sintering is a relatively new sintering technique in powder metallurgy which is capable of sintering metal and ceramic powers quickly to full density at a fairly low temperature due to its unique features. SPS of -200 mesh or -400 mesh CP-Ti powders was carried out in an $Ar+H_2$ mixed gas flowing atmosphere between $650^{\circ}C$ and $750^{\circ}C$ under 10 to 80 MPa pressure. When SPS was carried out at relatively low temperatures ($650^{\circ}C$ to $750^{\circ}C$), the high (>60 MPa) pressure had a marked effect on densification and grain growth suppression. The full density of titanium was achieved at temperatures and pressures above $700^{\circ}C$ and 60 MPa by spark plasma sintering. The crystalline phase and microstructure of titanium sintered up to $700^{\circ}C$ consisted of ${\alpha}$-Ti and equiaxed grains. Vickers hardness ranging from 293 to 362 Hv and strength ranging from 304 to 410 MPa were achieved for spark plasma sintered titanium.