• 제목/요약/키워드: Microstructure and mechanical properties

검색결과 2,018건 처리시간 0.028초

Cu-Fe-P계 합금의 강도 및 전기전도도에 미치는 첨가 원소의 영향 (Effects of Alloying Elements on the Tensile Strength and Electrical Conductivity of Cu-Fe-P Based Alloys)

  • 김대현;이광학
    • 한국재료학회지
    • /
    • 제20권2호
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, the effect of Sn and Mg on microstructure and mechanical properties of Cu-Fe-P alloy were investigated by using scanning electron microscope, transmission electron microscope, tensile strength, electrical conductivity, thermal softening, size and distribution of the precipitation phases in order to satisfy characteristic for lead frame material. It was observed that Cu-0.14wt%Fe-0.03wt%P-0.05wt%Si-0.1wt%Zn with Sn and Mg indicates increasing tensile strength compare with PMC90 since Sn restrained the growth of the Fe-P precipitation phase on the matrix. However, the electrical conductivity was decreased by adding addition of Sn and Mg because Sn was dispersed on the matrix and restrained the growth of the Fe-P precipitation. The size of 100 nm $Mg_3P_2$ precipitation phase was observed having lattice parameter $a:12.01{\AA}$ such that [111] zone axis. According to the results of the study, the tensile strength and the electrical conductivity satisfied the requirements of lead frame; so, there is the possibility of application as a substitution material for lead frame of Cu alloy.

Microstructure and Mechanical Properties of Ni3Al Matrix Composites with Fine Aluminum Oxide by PM Method

  • Han, Chang-Suk;Choi, Dong-Nyeok
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.495-498
    • /
    • 2018
  • Intermetallic compound matrix composites have been expected to be established as high temperature structural components. $Ni_3Al$ is a representative intermetallic alloy, which has excellent ductility even at room temperature by adding certain alloying elements. $Ni_3Al$ matrix composites with aluminum oxide particles, which are formed by the in-situ reaction between the alloy and aluminum borate whiskers, are fabricated by a powder metallurgical method. The addition of aluminum borate whiskers disperses the synthetic aluminum oxide particles during sintering and dramatically increases the strength of the composite. The uniform dispersion of reaction synthesized aluminum oxide particles and the uniform solution of boron in the matrix seem to play an important role in the improvement in strength. There is a dramatic increase in strength with the addition of the whisker, and the maximum value is obtained at a 10 vol% addition of whisker. The $Ni_3Al$ composite with 10 vol% aluminum oxide particles $0.3{\mu}m$ in size and with 0.1 wt% boron powder fabricated by the conventional powder metallurgical process does not have such high strength because of inhomogeneous distribution of aluminum oxide particles and of boron. The tensile strength of the $Ni_3Al$ with a 10 vol% aluminum borate whisker reaches more than twice the value, 930 MPa, of the parent alloy. No third phase is observed between the aluminum oxide and the matrix.

Transformation of PEO coatings from crater to cluster-based structure with increase in DC voltage and the role of ZrO2nanoparticles

  • Rehman, Zeeshan Ur;Shin, Seong Hun;Koo, Bon Heun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.111-111
    • /
    • 2016
  • Two step PEO ceramic coatings were formed on AZ91 magnesium alloy in $ZrO_2$ nanoparticles and $K_2ZrF_6$ based colloidal electrolyte solution for various voltages. Surface and layers tructure of the coatings was analyzed using SEM (ScanningElectronMicroscope). Structure analysis revealed that surface of the coating was transferred from individual pancake or craters-based structure to cluster-based structure with increasing the voltage of the secondary step process. Further, it was confirmed that the cluster zone was richin Zr-based complexes and formed due to high intensives parks. Increase in the Zr contents as discovered from the EDS analysis confirmed the rise in amorphous form of the Zr-based species, which justified the results of XRD where no increase in the intensity of Zr-based species was observed with increase in voltage. Potentiodynamic polarizariotion and impedance spectroscopy techniques were used to evaluate the corrosion performance of the coatings. The highest corrosion resistance was found for coatings prepared at 240V. The same specimen was found having highest and uniform vickers hardness ~1070.5 HV. The superior mechanical and electrochemical properties of the said coating can be attributed to the defect-less microstructure and the optimal role of $ZrO_2$ nanoparticles in the secondary PEO process at 240V.

  • PDF

고주파대응 고집적 모듈용 저유전율 소재 (Low k Materials for High Frequency High Integration Modules)

  • 나윤수;황종희;임태영;신효순;김종희;조용수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.328-328
    • /
    • 2008
  • As a low K material for high frequency high integration modules, glass/ceramic composites were investigated. Glass composition were selected from $SiO_2-B_2O_3-Al_2O_3-R_2O$-RO system which having very low dielectric constant and cordierite was used as a ceramic filler. These composites were sintered at temperature range from $850^{\circ}$ to $950^{\circ}$ and XRD, SEM microstructure analysis of sintered bodies were performed for understanding sintering behavior. Any crystallization was not occurred and dense sintered bodies were attained. Dielectric and mechanical properties of these sintered glass/cordierite composites were analysed by network analyzer and UTM. Glass/ceramic composite with 50 wt% cordierite showing a dielectric constant (${\varepsilon}_r$) of 5.4, Q${\times}f_0$ (Q) of 1600 at 1 GHz and maximum bending strength of 163 MPa was attained.

  • PDF

Ramjet 고속 추진체용 Alloy 718 합금 노즐 단조품 개발 (Development of Alloy 718 Nozzle for Ramjet Propulsion Component)

  • 박노광;김정한;김남용;이채훈;염종택;홍재근;백동규;최성규
    • 한국군사과학기술학회지
    • /
    • 제11권4호
    • /
    • pp.76-82
    • /
    • 2008
  • Alloy 718 nozzle component was manufactured by hot forging and electron beam welding process. In this process, 718 billets produced in domestic company were used and evaluated. Before performing industrial scale hot forging, small size hot compression tests were carried out under various process conditions and then microstructural evaluations were analyzed. Using the results, FEM simulations were performed in order to optimize the hot working process. After hot working, forged work-pieces were machined and welded by electron beam. Final nozzle components were heat treated and their microstructure and mechanical properties were investigated.

Ion assisted deposition of $TiO_2$, $ZrO_2$ and $SiO_xN_y$ optical thin films

  • Cho, H.J.;Hwangbo, C.K.
    • 한국진공학회지
    • /
    • 제6권S1호
    • /
    • pp.75-79
    • /
    • 1997
  • Optical and mechanical characteristics of $TiO-2, ZrO_2 \;and\; SiO_xN_y$ thin films prepared by ion assisted deposition (IAD) were investigated. IAD films were bombarded by Ar or nitrogen ion beam from a Kaufman ion source while they were grown in as e-beam evaporator. The result shows that the Ae IAD increases the refractive index and packing density of $TiO_2 films close to those of the bulk. For $ZrO_2$ films the Ar IAD increases the average refractive index decreases the negative inhomogeneity of refractive index and reverses to the positive inhomogeneity. The optical properties result from improved packing density and denser outer layer next to air The Ar-ion bombardment also induces the changes in microstructure of $ZrO_2$ films such as the preferred (111) orientation of cubic phase increase in compressive stress and reduction of surface roughness. Inhomogeneous refractive index SiOxNy films were also prepared by nitrogen IAD and variable refractive index of $SiO_xN_y$ film was applied to fabricate a rugate filter.

  • PDF

대형 티타늄 합금 용기의 고온 금형 성형 공정 개발 (Development of Hot die Forging Process for Large-size Titanium Alloy Container)

  • 권일근;김대순;박태동;박홍석;홍성석;심인옥
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.50-58
    • /
    • 2010
  • In order to successfully implement hot die forging process for the large-size titanium alloy products, it is necessary to devise a customized heating method for the billets and the die tools, as well as the die tool design. This study aims at establishing a hot die forging process of the large-size titanium alloy container products by applying the warm die, semi-hot die and hot die forging process step-wise. To accomplish this purpose, forging mechanism and the die tools were designed considering the strength of die materials at the given die heating temperature. The movable heating devices for the billet and the die tools were also introduced to prevent overcooling of billet and die tools. To verify the applicability of the designed forging process, real-size forging tests were carried out and the quality of forged products, including dimension, surface condition, microstructure and the mechanical properties was evaluated.

자유형 단조 공정에 의한 Ti-6Al-4V 빌렛 제조기술 (Manufacturing Process of the Ti-6Al-4V Billet by the Open-die Forging)

  • 김국주;최승식;황창률;김종식;염종택;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.377-380
    • /
    • 2006
  • Manufacturing process of Ti-6Al-4V alloy billet was investigated with FEM simulation and experimental analysis. Before the breakdown process of Ti-6Al-4V alloy ingot, FEM simulation for the breakdown processes of Ti-6Al-4V alloy ingot was used to calculate the forging load and state variables such as strain, strain rate and temperature. In order to breakdown the ingot structure and make an equiaxed structure billet, two different processes were employed for a VAR/VAR processed Ti-6Al-4V alloy ingot. Firstly, the ingot was cogged in single-phase $\beta$ field at the temperature of $1,100^{\circ}C$. In the process, the coarse and inhomogeneous structure developed by the double melting process was broken down. The second breakdown was performed by upsetting and cogging processes in $\alpha+\beta$ phase field to obtain the microstructure of fine equixed $\alpha$ structure in the matrix of transformed $\beta$. Finally, the mechanical properties of Ti-6Al-4V alloy billet made in this work were compared with those of other billet and ring product.

  • PDF

Effect of Welding Processes on Corrosion Resistance of UNS S31803 Duplex Stainless Steel

  • Chiu, Liu-Ho;Hsieh, Wen-Chin
    • Corrosion Science and Technology
    • /
    • 제2권1호
    • /
    • pp.36-40
    • /
    • 2003
  • An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to $250^{\circ}C$ is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as $\sigma$, $\gamma_2$ and $Cr_2N$ may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% $FeCl_3$ solution at $47.5^{\circ}C$ for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of $\sigma$ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution.

냉동 후막 성형에 의한 다공성 Al2O3 필름 제조 (Fabrication of Porous Al2O3 Film by Freeze Tape Casting)

  • 신란희;구준모;김영도;한윤수
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.438-442
    • /
    • 2015
  • Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the $Al_2O_3$ powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and $Al_2O_3$ powder volume fraction in acrylate in terms of the dendrite arm width.