• 제목/요약/키워드: Microstructure and mechanical properties

검색결과 2,021건 처리시간 0.027초

Flexural Behaviors of 4D Carbon/carbon Composites with the Preform Architectures

  • Lee, Ki-Woong;Park, Jong-Min;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제9권1호
    • /
    • pp.28-34
    • /
    • 2008
  • Multidirectional reinforcement is aimed primarily at overcoming interlaminar weakness, hence a major interest lies in the mechanical properties of multidirectional carbon/carbon composites. Mechanical properties depend on the type of carbon fiber, the size of the fiber bundle, the spacing of the bundles, the angles of the bundles relative to the axes of the block, and matrix formation. In the present studies, PAN based carbon fiber preforms manufactured different size of unit cell have been prepared. Densification of these used high pressure infiltration and carbonization technique with coal tar pitch as matrix precursor was carried out. Scanning electron microscopy has been used to study the fracture behavior of composites. The size of unit cell of the preforms has considerably affected on the flexural properties as well as microstructure of the carbon/carbon composites.

Ni-0.9wt%P 전주층의 기계적 특성 및 미세조직 (Mechanical Properties and Microstructure of Ni-0.9wt%P Electroformed Layer)

  • 정현규;서무홍;김정수;천병선;김승호
    • 한국표면공학회지
    • /
    • 제34권4호
    • /
    • pp.289-296
    • /
    • 2001
  • Ni-P electroformed layers were investigated for developing a steam generator tube repair technology in PWRs. The effects of an additive, RPP (Reagent over Pitting Protection) and agitation on mechanical properties and microstructure of the layer were evaluated. The addition of the RPP showed to inhibit the formation of pores, to refine the grain size, and to increase the residual stress in the layer. However, the agitation of the solution during electroforming was observed to increase pores in local regions of the electroformed layer, resulting in decreasing its mechanical properties. The heat treatment of the layer at $343^{\circ}C$ for 1 hr. precipitated the very fine particles of Ni3P in the layer, which inhibited grain growth and increased microhardness.

  • PDF

Cu 입자분산 Al2O3 나노복합재료의 미세조직과 기계적 특성에 미치는 소결온도의 영향 (Effect of Sintering Temperature on Microstructure and Mechanical Properties of Cu Particles Dispersed Al2O3 Nanocomposites)

  • 정영근;오승탁;좌용호
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.366-370
    • /
    • 2006
  • The microstructure and mechanical properties of hot-pressed $Al_2O_3/Cu$ composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at $1450^{\circ}C$, showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.

Mechanical Properties of Unidirectional Carbon-carbon Composites as a Function of Fiber Volume Content

  • Dhakate, S.R.;Mathur, R.B.;Dham, T.L.
    • Carbon letters
    • /
    • 제3권3호
    • /
    • pp.127-132
    • /
    • 2002
  • Unidirectional polymer composites were prepared using high-strength carbon fibers as reinforcement and phenolic resin as matrix precursor with keeping fiber volume fraction at 30, 40, 50 and 60% respectively. These composites were carbonized at $1000^{\circ}C$ and graphitised at $2600^{\circ}C$ in the inert atmosphere. The carbonized and graphitised composites were characterized for mechanical properties as well as microstructure. Microscopic studies were carried out of the polished surface of carbonized and graphitised composites after etching by chromic acid, to understand the effect of fiber volume fraction on oxidation at fiber-matrix interface. It is found that the flexural strength in polymer composites increases with fiber volume fraction and so does for the carbonised composites. However, the trend was found to be reversed in graphitised composites. In all the carbonized composites anisotropic region has been observed at fiber-matrix interface which transforms into columnar type microstructure upon graphitisation. The extension of strong and weak columnar type microstructure is function of fiber volume fraction. SEM microscopy of the etched surface of the sample reveal that composites containing 40% fiber volume has minimum oxidation at the interface, revealing a strong interfacial bonding.

  • PDF

열 노출에 의한 IN738LC의 기계적 특성 및 미세조직 변화 (Mechanical Properties and Changes in Microstructure for IN738LC with Thermal Exposure)

  • 윤용근;김재훈;정동희;유근봉
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1155-1160
    • /
    • 2011
  • 니켈기 초내열합금은 높은 강도, 피로 및 산화 저항성이 우수하여 비행기 엔진, 선박 엔진 및 발전용 가스터빈 고온 부품 등을 만드는 소재로 오래전부터 사용되어 왔다. 본 연구에서는 가스터빈 블레이드 소재인 니켈기 초내열합금 IN738LC에 대하여 실제 운전환경과 유사한 조건을 설정하여 다양한 변형률 범위와 온도에서 인장시험을 수행하였다. IN738LC 소재를 $871^{\circ}C$$982^{\circ}C$에서 각각 1,000 ~ 10,000 시간 동안 열 노출한 시편을 준비하여 기계적 특성 및 미세조직 변화를 관찰하였다. 기계적 특성 변화는 열 노출 시간에 따른 ${\gamma}$의 변화와 관련된 것을 확인하였다.

Wear Behavior of Silicon Nitride Depending on Gas Pressure Sintering Conditions

  • Kim, Sung-Ho;Lee, Soo-Wohn;Park, Yong-Kap
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.193-200
    • /
    • 2000
  • Si$_3$N$_4$powder with 2 wt% $Al_2$O$_3$and 6 wt% $Y_2$O$_3$additives was sintered by the gas pressure sintering (GPS) technique. The unlubricated wear behavior depending on sintering conditions such as sintering temperature, pressure, and sintering time was investigated. When the sintering temperature and time increased, the larger elongated grains were formed and the microstructural heterogeneity increased. When sintering pressure increased, grain growth, however, was impeded. Also, the wear properties depended on microstructure and friction coefficient were related to grain size. Based on the experimental results, the wear properties were associated with initial friction coefficients as well as mechanical properties including fracture toughness and flexural strength.

  • PDF

겹치기 마찰교반접합된 Inconel 600/SS 400 합금의 미세조직과 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400)

  • 송국현
    • 한국재료학회지
    • /
    • 제22권3호
    • /
    • pp.123-129
    • /
    • 2012
  • The microstructures and mechanical properties of friction stir welded lap joints of Inconel 600 and SS 400 were evaluated; friction stir welding was carried out at a tool rotation speed of 200 rpm and welding speed of 100 mm/min. Electron back-scattering diffraction and transmission electron microscopy were introduced to analyze the grain boundary characteristics and the precipitates, respectively. Application of friction stir welding was notably effective at reducing the grain size of the stir zone. As a result, the reduced average grain size of Inconel 600 ranged from $20{\mu}m$ in the base material to $8.5{\mu}m$ in the stir zone. The joint interface between Inconel 600 and SS 400 showed a sound weld without voids and cracks, and MC carbides with a size of around 50 nm were partially formed at the Inconel 600 area of lap joint interface. However, the intermetallic compounds that lead to mechanical property degradation of the welds were not formed at the joint interface. Also, a hook, along the Inconel 600 alloy from SS 400, was formed at the advancing side, which directly brought about an increase in the peel strength. In this study, we systematically discussed the evolution of microstructures and mechanical properties of the friction stir lap joint between Inconel 600 and SS 400.

High performance ultrafine-grained Ti-Fe-based alloys with multiple length-scale phases

  • Zhang, Lai-Chang
    • Advances in materials Research
    • /
    • 제1권1호
    • /
    • pp.13-29
    • /
    • 2012
  • In order to simultaneously enhance the strength and plasticity in nanostructured / ultrafine-grained alloys, a strategy of introducing multiple length scales into microstructure (or called bimodal composite microstructure) has been developed recently. This paper presents a brief overview of the alloy developement and the mechanical behavior of ultrafine-grained Ti-Fe-based alloys with different length-scale phases, i.e., micrometer-sized primary phases (dendrites or eutectic) embedded in an ultrafine-grained eutectic matrix. These ultrafine-grained titanium bimodal composites could be directly obtained through a simple single-step solidification process. The as-prepared composites exhibit superior mechanical properties, including high strength of 2000-2700 MPa, large plasticity up to 15-20% and high specific strength. Plastic deformation of the ultrafine-grained titanium bimodal composites occurs through a combination of dislocation-based slip in the nano-/ultrafine scale matrix and constraint multiple shear banding around the micrometer-sized primary phase. The microstructural charactersitcs associated to the mechanical behaivor have been detailed discussed.

고온 열화된 Inconel 600강의 미세조직 및 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Property of Inconel 600 Degraded under High Temperature)

  • 정광후;김성종
    • 한국표면공학회지
    • /
    • 제50권6호
    • /
    • pp.492-497
    • /
    • 2017
  • In this study, we investigated the effect of thermal aging on mechanical characteristics of Inconel 600 nickel-based alloy. The thermal aging was conducted up to 1000 hours at an atmosphere of $650^{\circ}C$. The microstructure of thermally aged specimens was investigated by an optical microscope (OM), scanning electron microscope (SEM) and energy dispersive spectrometer (EDS). In addition, tensile test (strain rate: 2 mm/min) and micro Vickers hardness test were conducted to evaluate mechanical properties with time. As a result of the experiment, Cr-rich carbide continuously precipitated during thermal aging, leading to the change of the mechanical characteristics and fracture mode. With the increase of aging time, tensile strength, yield strength, and hardness gradually decreased. The fracture mode changed from ductile to brittle with the increase of grain boundary carbide.

냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향 (Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming)

  • 김남규;박상덕;김병옥;최회진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 춘계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF