• Title/Summary/Keyword: Microstructure and mechanical properties

Search Result 2,018, Processing Time 0.026 seconds

The Microstructure and Mechanical Behavior of Deformed Silicon (변형된 실리콘의 미세구조와 기계적 거동)

  • Kim, Seong-Won;Kim, Hyung-Tae;Zuo, Jian-Min;Pacaud, Jerome
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.510-514
    • /
    • 2009
  • The microstructure and mechanical behavior of deformed silicon were characterized using transmission electron microscopy and nanoindentation. Structural defects such as stacking faults and dislocations were observed through the diffraction contrast in transmission electron microscopy. The mechanical properties of deformed Si and 111 Si wafer and mechanical behaviors during contact loading were also characterized using nanoindentation. The hardness values of silicon samples were ${\sim}10$ GPa and the elastic modulus were varied with indentation conditions. Elbow or pop-out behaviors were found in load-displacement curves of silicon samples during nanoindentation. Deformed silicon showed 'pop-out' behavior more frequently under the load of 10 mN, which is attributed to the structural defects in deformed silicon.

Microstructure and Mechanical Properties of Mg-Zn-Y-Yb Alloys Produced by Consolidation of Rapidly Solidified Ribbons

  • Sakamoto, Yoshihito;Yamasaki, Michiaki;Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1045-1047
    • /
    • 2006
  • Fabrication of $Mg_{95.75}Zn_1Y_3Yb_{0.25}$ bulk alloy has been performed through the consolidation of rapidly solidified ribbons. The $Mg_{95.75}Zn_1Y_3Yb_{0.25}$ bulk alloy exhibited excellent mechanical properties, high tensile yield strength of 530 MPa, and large elongation of 3 %. Microstructure of the alloy was characterized by equiaxed fine grains that consist of -Mg, long period ordered (LPO) structure phase, and $Mg_5RE$-type cubic compound. The strengthening of the alloys may be due to fine grains with LPO structure phase and $Mg_5RE$-type compound.

  • PDF

Influence of Granules Characteristics and Compaction Pressure on the Microstructure and Mechanical Properties of Sintered Alumina

  • Cho, Yong-Ick;Chung, Sang-Gwi;Cho, Sung-Yong;Kim, Seung-Jai;Nobuhiro Shinohara;Masataro Okumiya
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.212-217
    • /
    • 2001
  • The influence of granules characteristics and compaction pressure on the microstructure and mechanical properties of sintered as a function of slurry dispersion state. The characteristics and the compaction behavior of the spray dried alumina granules considerably affected the microstructure as well as the mechanical properties of the sintered body. In the green bodies formed with granules prepared with a dispersed slurry, the granules with dimple clearly existed and caused pore defects in sintered body. These dimples were clearly present even in the green body prepared at 180 MPa. The pores between the granules were not removed during pressing and sintering, and remained in the sintered body. In contrast, in the granules fabricated from a flocculated slurry, the destroy of granules at the contact points was observed with increasing pressure. Sintered bodies fabricated with fewer defects showed strength increase. For the sample fabricated with flocculated slurry, the pores at the boundaries of granules were small and more irregular shape compared with those of dispersed slurry.

  • PDF

The Effects of δ-ferrite on Weldment of 9-12% Cr Steels (9-12% Cr강의 용접부에 미치는 δ-ferrite의 영향)

  • Ahn, Sung-Yong;Kang, Namhyun
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2013
  • As the energy consumption increases rapidly, power generation needs the high energy efficiency continuously. To achieve the high efficiency of power generation, the materials used have to endure the higher temperature and pressure. The 9-12%Cr steels possess good mechanical properties, corrosion resistance, and creep strength in high temperature due to high Cr contents. Therefore, the 9-12%Cr steels are widely used for the high-temperature components in power plants. Even though the steels usually have a fully martensitic microstructure, they are susceptible to the formation of ${\delta}$-ferrite specifically during the welding process. The formation of ${\delta}$-ferrite has several detrimental effects on creep, ductility and toughness. Therefore, it is necessary to avoid its formation. As the volume fraction of ${\delta}$-ferrite is less than 2% in microstructure, it has the isolated island morphology and causes no significant degradation on mechanical properties. For ${\delta}$-ferrite above 2%, it has a polygonal shape affecting the detrimental influence on the mechanical properties. The formation of ${\delta}$-ferrite is affected by two factors: a chemical composition and a welding heat input. The most effective ways to get a fully martensite microstructure are to reduce the chromium equivalent less than 13.5, to keep the difference between the chromium and nickel equivalent less than 8, and to reduce the welding heat input.

Prediction Model for the Microstructure and Properties in Weld Beat Affected Brine : I. Trends in The Development of Model for the Prediction of Material Properties in the Weld HAZ (용접 열영향부 미세조직 및 재질 예측 모델링 : I. 용접부 재질 예측 모델 기술 개발 연구 동향)

  • Moon Joon-Oh;Lee Chang-Hee
    • Journal of Welding and Joining
    • /
    • v.23 no.4
    • /
    • pp.17-26
    • /
    • 2005
  • HAZ (Heat Affected Zone) which occurs during welding thermal cycle has an important effect on the mechanical properties of the weld metal. So there were many efforts to develop the model which is able to predict the microstructure and mechanical properties in weld HAZ and lots of metallurgical models have reported since early 1940. These models are justifiable based on the reasonable assumption and analytical approach, but they also have limitation by interesting alloying system and assumption in each literature. Therefore, this study summaries the previous models for prediction of properties in weld HAZ. Then several issues to solve for developing the more reliable model were proposed.

The structure and mechanical properties of unidirectionally solidified Al-Fe-Ni, Al-Fe-B alloy (일방향 응고시킨 Al-Fe-Ni, Al-Fe-B 합금의 기계적 성질 및 조직)

  • 김여원;신문교
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.57-66
    • /
    • 1986
  • The microstructure and mechanical properties of unidirectionally solidified Al-Fe-Ni and Al-Fe-B alloys have been studied in varying the some conditions. To investigate the change of microstructure and mechanical properties was carried out by the varying the composition and solidification rate from 1.2 to 80 mm/min at temperature gradient 60 .deg. C/cm. The results obtained are as follow; 1. In proportion to the increase of the solidification rate, the type of crystallized phase of these composite alloys was changed by added element. a) The crystallized phase of composite alloy in added nikel was changed from the rod-type fiber to platetype fiber. b) The crystallized phase of composite alloy in added boron was changed from the plate-type fiber to rod-type fiber. 2. The strength was rapidly increased with the changing process of crystallized fiber from the plate-type fiber to the rod-type.

  • PDF

A Study of Rolling Characterization on Mg Alloy Sheet (마그네슘 합금 판재의 압연특성연구)

  • Jeong, Y.G.;Lee, J.B.;Kim, W.J.;Lee, G.A.;Choi, S.;Jeong, H.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.53-56
    • /
    • 2006
  • Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolling with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than those rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolled materials were coarse and inhomogeneous, on the contrary, those of the differential speed rolled were fine and homogeneous.

  • PDF

Mechanical Properties and Contact Damage of Silicon Nitrides Nitrides : II. Effect of Microstructure (질화규소의 기계적 성질 및 접촉 손상 : II. 미세구조의 영향)

  • 이승건
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.22-27
    • /
    • 1998
  • The effect of the $\alpha$/$\beta$ phase fraction on the mechanical properties in silicon nitrides was investigated in part 1. In part II, we describe the role of microstructure on the mechanical properties and contact damage of silicon nitrides with coarse/equiaxed and coarse/elongated microstructures. Grain sizes and shapes were controlled by starting powder. Hertzian indentation using spherical indenter was also used to investigate contact damage behavior. Cone cracks from the spherical indentation were suppressed when the silicon nitride contains coarse and elongated grains. Coarse and elongated grains played an important role of cone crack suppression. The size of quasi-plastic zone does not depend on grain size or shape but depends on the fraction of $\alpha$/$\beta$ phase. A quasi-plastic zone was consisting of microcracks by shear stress during indentation.

  • PDF

Mechanical Property and Microstructure of the Annealed Fe-Si Alloy Manufactured by Laser-Powder Bed Fusion (L-PBF 공정 처리된 Fe-Si 합금의 열처리 조건에 따른 미세조직 및 기계적 특성)

  • J. Y. Park;M. S. Gwak;S. G. Jeong;H. S. Kim;J. G. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.2
    • /
    • pp.67-73
    • /
    • 2023
  • To overcome a climate change, manufacturing complex-shaped electric mobility parts becomes one of the important issues for enhancing a performance of motor with reducing their weight. Therefore, development of laser-based additive manufacturing shed on light due to their flexible manufacturing capacity that can be suitable to solve the poor formability of Fe-Si alloys for electric mobility parts. Although there are several studies existed to optimize the performance of additively manufactured Fe-Si alloys, the post-annealing effect was not well investigated yet though this is important to control the texture and mechanical properties of additively manufactured parts. In the present work, annealing effect on the mechanical property and microstructure of additively manufactured Fe-4.5Si alloy was investigated. Because of the ordered phase initiation after annealing, the hardness of additively manufactured Fe-4.5Si alloy increased up to 1173 K while a hardness drop occurs at the 1273 K condition due to the micro-crack initiation. The response surface methodology result represents the 1173 K-5 h sample is an optimal condition to maximize the mechanical property of additively manufactured alloy without micro-cracks.

The Effect of Microstructure and Mechanical Property with Heat Treatment Condition in Boron-Treated Low Carbon Low Alloy Steel (저탄소.저합금 보론 첨가강의 열처리 조건에 따른 미세조직과 기계적 성질의 영향)

  • Son, J.Y.;Park, B.C.;Sung, H.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.146-149
    • /
    • 2007
  • The effects of boron additions in steels have long been recognized as very important, mainly with respect to hardnability of heat treatable steels. The systematics of structure and properties of boron steels will then be illustrated in the context of low-alloy steels with carbon contents raging from 0.05 to 0.25% and boron contents 0-130 ppm. we investigated the effect of the microstructure and mechanical properties with heat treatment condition of the boron-treated(0.0013 ppm) low carbon(0.2 %C) low alloy steel. The specimens were austenitised for 5 and 10, 15 min at $880{\sim}940^{\circ}C$(with/without tempered at 150, 180 and $210^{\circ}C$ for the various periods of time from 60 min to 120 min) After heat treatment, mechanical properties were measured by tensile test and hardness test. For analysis of microstructure, Optical/SEM analysis and XRD were carried out.

  • PDF