• Title/Summary/Keyword: Microstructural evolution

Search Result 315, Processing Time 0.02 seconds

Microstructural Evolution and Properties in Ti(CN)-Co/Ni Cermet Depending on the Starting Material for Incorporation of WC (WC 첨가 방법에 따른 Ti(CN)-Co/Ni 계 서멧트의 미세조직 및 특성변화)

  • Chung, Tai-Joo;Ahn, Sun-Yong;Ahn, Seung-Su;Shin, Myung-Soo;Kim, Hak-Kyu;Kim, Kyung-Bae;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of Powder Materials
    • /
    • v.14 no.2 s.61
    • /
    • pp.132-139
    • /
    • 2007
  • In the Ti(CN)-Co/Ni cermet, WC is an effective additive for increasing sinterability and mechanical properties such as toughness and hardness. In this work, WC, (WTi)C and (WTi)(CN) were used as the source of WC and their effects were investigated in the respect of microstructural evolution and mechanical properties. Regardless of the kinds of WC sources, the hard phase with dark core and bright rim structure was observed in the Ti(CN)-Co/Ni cermet under the incorporation of relatively small amount of WC. However, hard phases with bright core began to appear and their frequency increased with the increase of all kinds of WC source addition. The ratio of bright core to dark one in the (TiW)(CN)-Co/Ni cermet was greatest under the incorporation of (WTi)C compared at the same equivalent amount of WC. The mechanical properties were improved with the addition of WC irrespective of the kinds of sources, but the addition of (WTi)(CN) was less effective for the increase of fracture toughness.

Microstructural Evolution of Ultrafine Grained AA1050/AA6061 Complex Aluminum Alloy Sheet with ARB Process (ARB공정에 따른 초미세립 AA1050/AA6061 복합알루미늄 합금 판재의 미세조직 발달)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.41-46
    • /
    • 2013
  • The microstructural evolution of AA1050/AA6061 complex aluminum alloy, which is fabricated using an accumulative roll-bonding (ARB) process, with the proceeding of ARB, was investigated by electron back scatter diffraction (EBSD) analysis. The specimen after one cycle exhibited a deformed structure in which the grains were elongated to the rolling direction for all regions in the thickness direction. With the proceeding of the ARB, the grain became finer; the average grain size of the as received material was $45{\mu}m$; however, it became $6.3{\mu}m$ after one cycle, $1.5{\mu}m$ after three cycles, and $0.95{\mu}m$ after five cycles. The deviation of the grain size distribution of the ARB processed specimens decreased with increasing number of ARB cycles. The volume fraction of the high angle grain boundary also increased with the number of ARB cycles; it was 43.7% after one cycle, 62.7% after three cycles, and 65.6% after five cycles. On the other hand, the texture development was different depending on the regions and the materials. A shear texture component {001}<110> mainly developed in the surface region, while the rolling texture components {011}<211> and {112}<111> developed in the other regions. The difference of the texture between AA1050 and AA6061 was most obvious in the surface region; {001}<110> component mainly developed in AA1050 and {111}<110> component in AA6061.

Effect of the Sintering Temperature and Atmosphere on the Microstructural Evolution and Shrinkage Behavior of CuO Ceramics (CuO 세라믹스의 소결 온도 및 분위기에 따른 미세구조와 수축거동 변화)

  • Song, Ju-Hyun;Lee, Jung-A;Lee, Joon-Hyung;Heo, Young-Woo;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.6
    • /
    • pp.528-534
    • /
    • 2012
  • In this study, the densification behavior and microstructural evolution of CuO were examined when this material was sintered at different temperatures in $O_2$, air and Ar atmospheres. The CuO samples maintained their phases even after prolonged sintering at $900-1100^{\circ}C$ in an oxygen atmosphere. When sintering in air, the densification was faster than it was when sintering in oxygen. However, when the samples were sintered at $1100^{\circ}C$, large pores were observed in the sample due to the phase transformation from CuO to $Cu_2O$ which accompanies the generation of oxygen gas. The pore channels in the sample became narrower as the sintering time increased, eventually undergoing a Rayleigh breakup and forming discrete isolated pores. On the other hand, CuO sintering in Ar did not contribute to the densification, as all CuO samples underwent a phase transformation to $Cu_2O$ during the heating process.

A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation (초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구)

  • Joo Sungwook;Yoo Junghoon;Shin Keesam;Hur Sung Kang;Lee Je-Hyun;Suk Jin Ik;Kim Jeong Tae;Kim Byung Hoon
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.

Evaluation of Creep Properties of W-substituted 2205 Duplex Stainless Steel (W치환 2205 이상 스테인리스강의 크리프 특성 평가에 관한 연구)

  • Kim, Gi-Yeob;Choi, Byong-Ho;Nam, Ki-Woo;Ahn, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.1
    • /
    • pp.29-37
    • /
    • 2004
  • The effect of the substitution of Tungsten(W) for Molybdenum(Mo) on the creep behaviour of 22Cr-5Ni duplex stainless steel(DSS) has been investigated. Creep tests were carried out at $600^{\circ}C\;and\;650^{\circ}C$. Intermetallic ${\sigma}$ phase is precipitated during creep at $650^{\circ}C$, at which creep rupture time was much lower compared with at $600^{\circ}C$. The substitution of W for Mo in the duplex stainless steel was known to retard the formation of ${\sigma}$ phase. Minimum creep rate and creep rupture time, however, were hardly influenced by the substitution of 2wt.% W. An ultrasonic measurement for the creep specimens has been carried out for the evaluation of creep damage. The sound velocity increases propotionally with the increase of creep rupture time at $600^{\circ}C$ of creep temperature. On the contrary, the sound velocity decreases with the increase of rupture time at $650^{\circ}C$, which can be correlated with the microstructural evolution during creep.

Microstructure and Mechanical Properties of Strip Casted Ag-27%Cu-25%Zn-3%Sn Brazing Alloy (브레이징용 Ag-27%Cu-25%Zn-3%Sn 박판 주조 스트립의 미세조직 및 기계적 특성 연구)

  • Kim, S.J.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu-25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied,. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement, and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (${\sim}20%$) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

  • PDF

Effect of Processing Variables on Microstructure and Critical Current Density of BSCCO Superconductors Tape (BSCCO 초전도 선재의 미세조직 및 임계전류밀도에 미치는 공정변수 효과)

  • 지봉기;김태우;주진호;김원주;이희균;홍계원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1014-1021
    • /
    • 1998
  • We evaluated the effect of processing variables on microstructural evolution interface irregularity between Ag sheath and superconductor core and resultant critical current density(J$_{c}$) of (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$_{x}$(2223) superconductor tape. The value of J$_{c}$ was significantly influenced by the interface irregularity, degree of texturing and relative 2223 content. The interface became more irregular(sausage effect), while the degree of texturing gradually improved as the dimension of tape decreased during forming process. As the dimension of wire/tape were changed from diameter of 3.25 mm to thickness of 0.20 mm, J$_{c}$ value was observed to be increased by 10 times. In addition, optimum sintering temperature for improved J$_{c}$ was observed to be 835$^{\circ}C$ in a ambient atmosphere probably due to combined effect of both improved texturing and high 2223 content. Microstructural investigation showed the degree of texturing was degraded by the existence of both second phases and interface irregularity. It was observed that larger grain size and better texturing was developed near relatively flat interface compared to those inside superconducting core.ting core.

  • PDF

Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder ($Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구)

  • ;;;;T. Sekino;K. Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

Evaluation of High Temperature Workability of A350 LF2 Using the Deformation Processing Map (변형 공정지도를 활용한 A350 LF2 소재의 고온 성형성 평가)

  • Jung E.J.;Kim J.H.;Lee D.G.;Park N.K.;Lee C.S.;Yeom J.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.333-339
    • /
    • 2006
  • Hot deformation behavior of a carbon steel (A350 LF2) was characterized by compression tests in the temperature range of $800-1250^{\circ}C$ and the strain rate range of $0.001-10s^{-1}$, The microstructural evolution during hot compression was investigated and deformation mechanisms were analyzed by constructing a deformation processing map. Processing maps were generated using the combination of dynamic material model (DMM) and flow instability theories based on the flow stability criteria and Ziegler's instability criterion. In order to evaluate the reliability of the map, the mirostructural characteristics of the hot compressed specimens were correlated with test conditions in the stable and unstable regime. The combined microstructural and processing map of A350 LF2 was applied to predict an optimum condition and unstable regions for hot forming.