• Title/Summary/Keyword: Microstructural control

Search Result 126, Processing Time 0.027 seconds

The Effect of Addition of Ti and Co Elements on Microstructural control and Characteristics of Vacuum-casted Cu-25 wt%Cr Electrical Contact Material (Ti과 Co 첨가가 진공주조법으로 제조된 Cu-25 wt%Cr 난가공성 중고압용 전기접점 소재의 미세구조 제어 및 물성에 미치는 영향)

  • Hye Sung Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.4
    • /
    • pp.172-181
    • /
    • 2024
  • In this study, the effect of addition of Ti and Co elements on microstructural evolution and characteristics of vacuum-casted Cu-25%Cr electrical contact material was investigated. The coarse and insoluble Cr phases with an average size of 300 ㎛ in commercial Cu-25%Cr alloy were reduced to tens of micrometers in vacuum casted Cu-25%Cr-X(X=Ti, Co) alloy, which can be interpreted as result controlling coarsening and the work-frame structure of the insoluble Cr phase by the formation of intermetallic compounds such as Cr2Ti or Cr0.5Co1.5Ti around the Cr phase As a result, the electrical properties such as weight loss and fusion resistance against the repeated arc generation of the electrical contact material as well as the mechanical properties were greatly improved.

Microstructural Control of Al-Sn Metal Bearing Alloy with Heat Treatment (열처리에 따른 메탈베어링용 Al-Sn 합금의 미세조직 제어)

  • Kim, Jin-Soo;Park, Tae-Eun;Hahn, Chun-Feng;Sohn, Kwang-Suk;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.45-51
    • /
    • 2009
  • Conventionally, Al-Sn bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. This article will describe the microstructural control of Al-Sn metal bearing alloy following heat treatment. When the pure aluminum rod dipped in the melt of tin maintained below the melting point of aluminum, the melting of aluminum was accelerated with penetration of tin along the grain boundary of aluminum. The length of plate-shaped eutectic tin was decreased with heat treatment time. With even longer heat treatment time over 1 hour the length of eutectic tin didn't decrease any more, while resulting in coarsening of aluminum matrix. Exuded liquid of eutectic tin was formed at the surface of Al-Sn alloy after heat treatment even at below eutectic temperature.

Mechanical Behavior of A356 depending on the Variation of Microstructure (A356 합금 미세조직변화에 따른 기계적 특성에 관한 연구)

  • Kim K. J.;Kwon Y. N.;Lee Y. S.;Lee J. H.;Lee S. H.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.273-276
    • /
    • 2004
  • A356 alloy is one of the most popular casting aluminum alloys due to its good castability. It is well known that the mechanical properties of A356 alloy strongly depend on its characteristic microstructure, such as the size of eutectic Si, primary $\alpha$ dendrite and so on. These microstructural features are determined during the casting and solidification process, which implies the strong relationship with mechanical properties with solidification methods. In the present study, the mechanical characteristics of A356 alloy was investigated by using squeeze cast control arm in terms of the microstructural features, such as the size of eutectic Si, primary a dendrite. By doing so, the most favorable microstructure of A356 could be determined for Al control arm that should be one of the most reliable parts in automobile.

  • PDF

Microstructural Control of Al-Sn Alloy with Addition of Cu and Si (Cu와 Si 첨가에 의한 Al-Sn 합금의 미세조직 제어)

  • Son, Kwang Suk;Park, Tae Eun;Kim, Jin Soo;Kang, Sung Min;Kim, Tae Hwan;Kim, Donggyu
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • The effect of various alloying elements and melt treatment on the microstructural control of Al-Sn metallic bearing alloy was investigated. The thickness of tin film crystallized around primary aluminum decreased with the addition of 5% Cu in Al-Sn alloy, with tin particles being reduced in size by intervening the Ostwald ripening. With the addition of Si in Al-10%Sn alloy, the tin particles were crystallized with eutectic silicon, resulting in uniform distribution of tin particles. With the addition of Cu and Si in Al-Sn alloy, both the tensile strength and yield strength increased, with the increasing rate of yield strength being less than that of tensile strength. Although the Al-10%Sn-7%Si alloy has similar tensile strength compared with Al-10%Sn-5%Cu, the former showed superior abrasion resistance, resulting from preventing the tin particles from movement to the abrasion surface.

A study on the improvement of thickness accuracy in a plate mill

  • Lee, Duk-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.723-727
    • /
    • 2003
  • In this paper, two methods are discussed for good rolling force prediction in a plate mill. One is about the development of a long and a short learning scheme using a Neural Network for normal rolling and the other is about a mathematical model improvement by considering microstructural changes for controlled rolling. The research results are implemented in a on-line system of Pohang Works in POSCO and the field tests have showed that the prediction accuracies of rolling force are highly improved.

  • PDF

Microstructure Control and Tensile Property Measurements of Hot-deformed γ-TiAl alloy (열간가공된 γ-TiAl 합금의 미세조직 제어 및 기계적 특성 평가)

  • Park, Sung-Hyun;Kim, Jae-Kwon;Kim, Seong-Woong;Kim, Seung-Eon;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.256-262
    • /
    • 2019
  • The microstructural features and texture development by both hot rolling and hot forging in ${\gamma}-TiAl$ alloy were investigated. In addition, additional heat treatment after hot forging was conducted to recognize change of the microstructure and texture evolution. The obtained microstructural features through dynamic recrystallization after hot deformed ${\gamma}-TiAl$ were quite different because two kinds of formation process were occurred depending on deformation condition. However, analyzed texture tends to be random orientation due to intermediate annealing up to ${\alpha}+{\beta}$ region during the hot deformation process. After additional heat treatment, microstructure transformed into fully lamellar microstructure and randomly oriented texture was also observed due to the same reason as before. Tensile test at room temperature demonstrated that anisotropy of mechanical properties were not appeared and transgranular fracture was occurred between interface of ${\alpha}_2/{\gamma}$. As a result, it could be suggested that microstructural features influenced much more than texture development on mechanical properties at room temperature.

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V.;Shanmugapriya, T.;Jain, Chetan;Agrahari, Himanshu Kumar;Malpani, Tanmay
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.479-490
    • /
    • 2021
  • Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

Electroless Ni-P Plating and Heat Treatments of the Coating Layer for Enhancement of the Cavitation Erosion Resistance of Vessel Propellers (선박 프로펠러의 케비테이션 침식 저항 향상을 위한 Ni-P 무전해 도금층 형성 및 열처리를 통한 미세조직 제어)

  • Kim, Young-jae;Son, In-Jun;Yi, Seonghoon
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.409-415
    • /
    • 2017
  • For enhanced cavitation erosion resistance of vessel propellers, an electroless Ni-P plating method was introduced to form a coating layer with high hardness on the surface of Cu alloy (CAC703C) used as vessel propeller material. An electroless Ni-P plating reaction generated by Fe atoms in the Cu alloy occurred, forming a uniform amorphous layer with P content of ~10 wt%. The amorphous layer transformed to (Ni3P+Ni) two phase structure after heat treatment. Cavitation erosion tests following the ASTM G-32 standard were carried out to relate the microstructural changes by heat treatment and the cavitation erosion resistance in distilled water and 3.5 wt% NaCl solutions. It was possible to obtain excellent cavitation erosion resistance through careful microstructural control of the coating layer, demonstrating that this electroless Ni-P plating process is a viable coating process for the enhancement of the cavitation erosion resistance of vessel propellers.

Analysis of Cracking Phenomenon Occurring During Hot Rolling of Fe-23Mn High-manganese Steels with Different Aluminium and Carbon Contents (알루미늄과 탄소 함량에 따른 Fe-23Mn계 고망간강의 열간 압연 시 발생하는 균열 현상 분석)

  • Lim, Hyeon-Seok;Lee, Seung-Wan;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.176-180
    • /
    • 2016
  • In this study, a microstructural investigation was conducted on the cracking phenonmenon occurring during hot rolling of Fe-23Mn high-manganese steels with different aluminium and carbon contents. Particular emphasis was placed on the phase stability of austenite and ferrite dependent on the chemical composition. An increase in the aluminum content promoted the formation of ferrite band structures which were easily deformed or cracked. In the steels containing high carbon contents of 0.4 wt.% or higher, on the other hand, the volume fraction and thickness of ferrite bands decreased and thus the cracking frequency was significantly reduced. Based on these findings, it is said that the microstructural evolution occurring during hot rolling of high-manganese steels with different aluminium and carbon contents plays an important role in the cracking phenomenon. To prevent the cracking, therefore, the formation of second phases such as ferrite should be minimized during the hot rolling by the appropriate control of the chemical composition and process parameters

Microstructural Characterization of Composite Electrode Materials in Solid Oxide Fuel Cells via Image Processing Analysis

  • Bae, Seung-Muk;Jung, Hwa-Young;Lee, Jong-Ho;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.86-91
    • /
    • 2010
  • Among various fuel cells, solid oxide fuel cells (SOFCs) offer the highest energy efficiency, when taking into account the thermal recycling of waste heat at high temperature. However, the highest efficiency and lowest pollution for a SOFC can be achieved through the sophisticated control of its constituent components such as electrodes, electrolytes, interconnects and sealing materials. The electrochemical conversion efficiency of a SOFC is particularly dependent upon the performance of its electrode materials. The electrode materials should meet highly stringent requirements to optimize cell performance. In particular, both mass and charge transport should easily occur simultaneously through the electrode structure. Matter transport or charge transport is critically related to the configuration and spatial disposition of the three constituent phases of a composite electrode, which are the ionic conducting phase, electronic conducting phase, and the pores. The current work places special emphasis on the quantification of this complex microstructure of composite electrodes. Digitized images are exploited in order to obtain the quantitative microstructural information, i.e., the size distributions and interconnectivities of each constituent component. This work reports regarding zirconia-based composite electrodes.