• 제목/요약/키워드: Microstructural Degradation

검색결과 88건 처리시간 0.024초

용접부 미세조직의 재질열화 평가를 위한 Advanced Small Punch 시험에 관한 연구 (A Study on Advanced Small Punch Test for Evaluation of Material Degradation in Weldment Microstructures)

  • 이동환;이송인;박종진;유효선
    • Journal of Welding and Joining
    • /
    • 제21권1호
    • /
    • pp.99-106
    • /
    • 2003
  • This research was aimed to evaluate the material degradation with various microstructures of X20CrMoV121 steel weldment by Advanced Small Punch(ASP) test. Due to the regional limitation on constitutive structures, the minimized loading ball(${\varphi}1.5mm$) and bore diameter of lower die(${\varphi}3mm$) were designed for the ASP test. The micro-hardness test was also performed to assess the mechanical properties with artificial aging heat treatment. Material degradation was estimated by ductile-brittle transition temperature(DBTT). The results obtained from the ASP test were compared with those from conventional small punch(CSP) test and CVN impact test for several weldment microstructures. It was found that the ASP test clearly showed the microstructural dependance on the material degradation in the weldment.

전기비저항, 바크하우젠노이즈 및 탄화물 분석법을 이용한 2.25Cr-1Mo 강의 열화도 평가 (Evaluation of degradation in aged 2.25CrMo steel by electrical resistivity, magnetic Barkhausen noise and carbide analysis)

  • 변재원;표승우;권숙인
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.210-215
    • /
    • 2001
  • The ferritic 2.25CrMo steel has been used for high temperature structure applications such as turbine rotors, boilers and pressure vessels in fossil plant and petroleum chemical facilities. However, this steel is known to result in aging degradation due to temper embrittlement, carbide induced brittleness and softening of matrix after long time exposure to high temperature. This research investigated the microstructural and mechanical changes after artificial degradation treatment and evaluated the degree of degradation by several nondestructive methods. The decrease of electrical resistivity and increase of magnetic Barkhausen noise(RMS voltage) with increasing aging time were observed. The change of electrical resistivity and Barkhausen noise showed a good correlation with the ductile-brittle transition temperature.

  • PDF

Electric-Field Induced Degradation of Ionic Solids

  • Chun, Ja-Kyu;Yoo, Han-Ill
    • 한국세라믹학회지
    • /
    • 제49권1호
    • /
    • pp.48-55
    • /
    • 2012
  • Degradation of performance and life time of a functional material or device thereof is induced, to a great extent, by mass transfer in the material that is driven by various thermodynamic forces imposed intentionally or accidentally during its operation or service. The forces are any gradient of intensive thermodynamic variables, component chemical potentials, electrical potential, temperature, stresses, and the like. This paper reviews electric-field induced degradation phenomena in ionic solid compounds including insulation resistance degradation, crystal shift, microstructural alterations, compositional unmixing, and compound decomposition. Their inner workings are also discussed qualitatively.

12%Cr강 인성열화도의 전기화학적 평가법에 대한 연구(II) (A Study on Electrochemical Evaluation Method of Toughness Degradation for 12%Cr Steel (II))

  • 김창희;서현욱;윤기봉;박기성;김승태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.268-273
    • /
    • 2001
  • Fossil power plants operated in high temperature condition are composed of components such as turbine, boiler, and piping system. Among these components, turbine blades made with 12%Cr steel operate at a temperature above $500^{\circ}C$. Due to the long term service, turbine blades experience material degradation manifested by change in mechanical and microstructural properties. The need to make life assessment and to evaluate material degradation of turbine blade is strongly required but in reality, there is a lack of knowledge in defining failure mechanism and fundamental data for this component. Therefore, in making life assessment of turbine blade, evaluation of material degradation must be a priority. For this purpose, evaluation of toughness degradation is very important. The major cause of toughness degradation in 12Cr turbine blade is reported to be critical corrosion pitting induced by segregation of impurity elements(P etc.), coarsening of carbide, and corrosion, but the of materials for in-service application. In this study, the purpose of research is focused on evaluating toughness degradation with respect to operation time for 12%Cr steel turbine blade under high temperature steam environment and quantitatively detecting the degradation properties which is the cause of toughness degradation by means of non-destructive method, electrochemical polarization.

  • PDF

The effect of materials properties on the reliability of hydraulic turbine runners

  • Thibault, Denis;Gagnon, Martin;Godin, Stephane
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권4호
    • /
    • pp.254-263
    • /
    • 2015
  • The failure of hydraulic turbine runners is a rare event. So in order to assess the reliability of these components one cannot rely solely on the number of observed failures in a given population. However, as there is a limited number of degradation mechanisms involved, it is possible to use physically-based reliability models. Such models are often more complicated but are able to account for physical parameters in the degradation process. They can therefore help provide solutions to improve reliability. With such models, the effect of materials properties on runner reliability can be highlighted. This paper presents a brief review of the Kitagawa-Takahashi diagram which links the damage tolerance approach, based on fracture mechanics, to the stress or strain-life approaches. Using simplified response spectra based on runner stress measurements, we will show how fatigue reliability is sensitive to materials fatigue properties, namely fatigue crack propagation behaviour and fatigue limit obtained on S-N curves. Furthermore, we will review the influence of the main microstructural features observed in 13%Cr-4%Ni stainless steels commonly used for runner manufacturing. The goal is ultimately to identify the most influential microstructural features and to quantify their effect on fatigue reliability of runners.

Twisting된 Bi-2223 선재의 제조, 미세조직 관찰 및 임계 특성평가 (Fabrication and evaluation of microstructural evolution and critical property of twisted Bi-2223 superconductor tape)

  • 임준형;지봉기;박형상;주진호;장미혜;고태국;이상진;하홍수;오상수
    • 한국전기전자재료학회논문지
    • /
    • 제13권3호
    • /
    • pp.241-246
    • /
    • 2000
  • We fabricated Bi-2223 multi-filaments superconductor tape and evaluated the effect of twisting on the microstructural evolution and critical current. Twist pitches of the tapes are in the range of 70- 8mm and uniformly deformed. It was observed that grain size and the degree of texture decreased as decreasing pitch probably due to the formation of the irregular interface between Ag and filaments. In addition critical current of the tapes decreased to 6.5 A with decreasing pitch to 8mm, showing 48% of degradation compared to the untwisted tapes decreased to 6.5 A with decreasing pitch to 8mm, showing 48% of degradation compared to the untwisted tape(12.5 A). These reduction of critical current may be related to the interface irregularity smaller grain size worse texture and the presence of cracks due to the induced strain during twisting processing.

  • PDF

로터용 내열강의 구조 건전성 모니터링을 위한 미세 조직 평가 (Microstructural Characterization for Structural Health Monitoring of Heat-Resisting Rotor Steels)

  • 김정석;변재원;박익근
    • 비파괴검사학회지
    • /
    • 제28권2호
    • /
    • pp.177-183
    • /
    • 2008
  • 고온-고압의 장시간 사용으로 나타나게 되는 재료열화현상을 이해하고 구조건전성 모니터링을 위한 기초연구로 사용하고자 대표적인 로터용 내열강인 2.25CrMo 강과 9CrMo 강 그리고 12CrW 강을 연구하였다. 재료열화를 모니터링하기 위해 2.25CrMo 강은 등온열화 시험을 9CrMo 강은 크리프-피로 시험을 그리고 12CrW 강은 크리프 시험을 각 단계별로 수행하였다. 이들 각 손상재에 대한 초음파전파특성, 비저항측정 그리고 보자력측정을 통하여 미세조직 의존성을 고찰하였고 이들 파라미터는 특정 미세조직의 변화에 상당히 민감하게 작용하였다.

2.5Y-TZP의 안정성에 관한 연구 (Thermal Stability of 2.5Y-TZP under Low-Temperature Aging)

  • 장성도;오경영
    • 한국세라믹학회지
    • /
    • 제27권2호
    • /
    • pp.226-232
    • /
    • 1990
  • The degradation phenomena and thermal stability of 2.5Y-TZP at low-temperature were studied by means of XRD, Raman spectra and microstructural analysis. The degradation of heat-treated 2.5Y-TZP at 20$0^{\circ}C$-20hr in air was observed on the TZP surface, be caused by the cracks generated from tlongrightarrowm transformation, and the cracks was propagated inside the polycrystalline body. The ZrO2 grain boundaries and grains near the crack were revealed as if these were diffused and dissolved. And it was also observed mlongrightarrowt transformation as the degraded TZP was refired at 140$0^{\circ}C$, and it was thought to be the fact that the moisture in atmosphere during the aging process contributed to the degradation. The thermal stability of 2.5Y-TZP was improved dramatically with an addition of 3w/o CeO2 or a provision of high Y2O3 concentration on the TZP surface.

  • PDF

휴대전자기기용 저용량 리튬이온 배터리의 충방전 열화 기구 분석 및 모니터링 (Evaluation and monitoring of degradation mechanism of Li-ion battery for portable electronic device)

  • 변재원
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권2호
    • /
    • pp.129-140
    • /
    • 2013
  • As a fundamental experimental study for reliability improvement of lithium ion secondary battery, degradation mechanism was investigated by microscopic observation and acoustic emission monitoring. Microstructural observation of the decomposed battery after cycle test revealed mechanical and chemical damages such as interface delamination, microcrack of the electrodes, and solid electrolyte interphase (SEI). Acoustic emission (AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Observed damages were attributed to sources of the detected AE signals.

이종금속 용접부의 경도변화에 대한 장시간 인공열화의 영향 (Effects of Long-term Artificial-Aging on the Hardness Variation of Dissimilar Metal Weldments)

  • 김정석
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.31-37
    • /
    • 2019
  • This study investigates the effects of long-term artificial-aging on hardness variation in the dissimilar metal weldments for nuclear power plant facilities. These dissimilar welds are inevitably required to join the components in nozzle parts of pressurized vessels, such as austenitic stainless steels and ferritic steels. A artificial thermal aging was conducted in an electrical furnace to simulate material degradation at high temperatures. The test materials were held at the temperature of $600^{\circ}C$ for 10000 hours and interrupted at various levels of degraded specimens. The degradation of hardness is a well-known phenomenon resulting from long-term aging or high-temperature degradation of structural materials. In this study, the variation of hardness at each position was different, and complicated in relation to microstructures such as twins, grains, precipitates, phase transformations, and residual stresses in dissimilar weldments. We discussed the variation of hardness in terms of microstructural changes during long-term aging.