• Title/Summary/Keyword: Microstrip line feed

Search Result 111, Processing Time 0.026 seconds

Miniaturization of an Ultra-Wideband Antenna with Two Spiral Elements

  • Hong, Seok-Jin;Choi, Jae-Hoon
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.71-73
    • /
    • 2009
  • In this letter, novel antennas with two spiral elements are presented for ultra-wideband application. The original antenna consists of a T-shaped microstrip feed line, two spiral radiating elements, and a ground plane with two circular slots. It measures 30 mm ${\times}$ 40 mm ${\times}$ 1.6 mm. Spiral elements are used to increase the lower bandwidth limit. To further reduce the size of the antenna, the original antenna is cut in half by using the symmetry of the surface current distributions. The proposed antennas feature omnidirectional radiation patterns and good gain flatness.

  • PDF

Design of the Elliptic Monopole Antenna for Ultra Wide-Band (Ultra Wide-Band용 타원형 모노폴 안테나 설계)

  • Cha, Sang-Jin;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.442-445
    • /
    • 2003
  • The use of a single UWB antenna which covers a wide range of frequencies is very desirable for future wireless communications system. In this paper, we propose a novel wide band printed elliptic monopole antenna for UWB(Ultra wide Band). Wideband planar monopole disc antenna have been recently studied. The proposed antenna can cover UWB frequencies from 3.5GHz to 12GHz. it is determined from 10dB return loss. The antenna consists of the printed elliptical monopole disc with microstrip-line feed. Elliptic disc of antenna and ground height operate important to matching. The results of measurement are almost similar to those of simulation.

  • PDF

A Multi-Polarization Reconfigurable Microstrip Antenna Using PIN Diodes (PIN 다이오드를 이용한 다중 편파 재구성 마이크로스트립 안테나)

  • Song, Taeho;Lee, Youngki;Park, Daesung;Lee, Seokgon;Kim, Hyoungjoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.492-501
    • /
    • 2013
  • In this paper, a multi polarization reconfigurable microstrip antenna that can be used selectively for four polarizations(vertical polarization, horizontal polarization, right hand circular polarization, left hand circular polarization) at the S-band is presented. The proposed antenna consists of four PIN diodes and a microstrip patch with a cross slot and a circular slot and is fed by utiliting electromagnetic coupling between the microstrip patch and the feed line. The proposed antenna has a DC bias network to supply DC voltage to each PIN diode and the polarization can be determined by controlling the ON /OFF states of four PIN diodes. The fabricated antenna has a VSWR below 2 in the vertical polarization(3.17~3.21 GHz), the horizontal polarization(3.16~3.20 GHz), the left hand circular polarization (3.08~3.19 GHz), and the right hand circular polarization(3.10~3.2 GHz) frequency bands. The designed antenna has the cross polarization level higher than 20 dB, a gain over 5 dBi for the linear polarization states, and 3 dB axial ratio bandwidth wider than 50 MHz in the circular polarization states.

Design for Trapezoidal Planar UWB Antenna Using Symmetry Meander Feedline (대칭 미앤더 급전 선로를 이용한 사다리꼴 평면 UWB 안테나 설계)

  • Kim, Tae-Geun;Min, Kyeong-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.8
    • /
    • pp.739-745
    • /
    • 2009
  • This paper presents a design for trapezoidal planar UWB(Ultra Wide-band) antenna using symmetry meander line to realize broad bandwidth at low frequency region. The size of proposed design antenna is $15.5{\times}21{\times}1.6mm^3$ and dielectric substrate considered in design has 4.4 of relative permittivity. The calculated bandwidth is from 1.31 GHz to 10.83 GHz and the measured return loss is 1.5 GHz to 10.6 GHz at -10 dB below, and satisfies with the UWB antenna's bandwidth. The simulated and measured radiation patterns show fine agreement with each other at each frequency.

Reconfigurable Polarization Patch Antenna with Y-Shaped Feed (Y형태의 급전 구조를 이용한 편파 변환 재구성 패치 안테나)

  • Lee, Da-Ae;Sung, Youngje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, a reconfigurable polarization patch antenna that uses a Y-shaped feed is proposed. The proposed antenna consists of a square patch, a Y-shaped feeding structure, a PIN diode, and a bias circuit for diode operation. The structural symmetry/asymmetry of the feeding structure is determined by the on/off operation of the PIN diode that inserted into the side of one of the lines of the Y-shaped feeding structure. For the proposed reconfigurable antenna, the two microstrip lines of the feeding structure have the same length when the PIN diode operates in the on state, and the antenna exhibits linear polarization(LP). On the other hand, when the PIN diode operates in the off state, the length of one side line of the feeding structure is relatively shorter than that of the other line. Therefore, the antenna exhibits circular polarization(CP). From the measurement results, it is found that the proposed antenna exhibits good impedance matching and axial ratio. In addition, polarization switching can be easily achieved in the same operating band.

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

Design and Fabrication of Aperture-Coupled Microstrip Patch Antenna for WLL Repeater Using Space Diversity (공간 다이버시티를 이용한 WLL 중계기용 적층형 평판 안테나 설계 및 제작)

  • 한봉희;노광현;박노준;강영진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4B
    • /
    • pp.388-396
    • /
    • 2002
  • In this paper, An aperture-coupled microstrip patch antenna operating at WLL frequency range(Rx : 2.3∼2.33Ghz, Tx : 2.37 ∼2.4Ghz) for WLL repeater is designed and fabricated. FR-4 epoxy substrate with 4.7 relative permittivity is inserted between feed-line and patch plane. Aperture-coupled structure is employed for consideration of bandwidth improvement and gain\`s characteristics. Air gap is arranged at each layer for bandwidth extension and radome is used as a protector in the upper patch. In this paper, both 1 port and 2 port are designed as 1$\times$2 array antenna which uses T-junction and λ$\_$g//4 transformer. Here, 1 port is used as transmitting/receiving antenna and 2 port is used as receiving antenna. Functionally independent two antennas using space diversity arrange slots between two antennas in order to be placed at the same place. As a result, we obtained a excellent isolation below -40dB and return loss is reduced by means of slots arrangement between patch and antenna.

Miniaturization of UWB Antenna Using Open Ended Stepped Slot (개방 종단된 계단형 슬롯을 사용한 UWB용 안테나의 소형화)

  • Lee, Ki-yong;Lee, Young-soon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.353-358
    • /
    • 2017
  • In order to reduce the size of the previous stepped slot antenna for UWB applications(3.1 ~ 10.6 GHz) to half, an open ended stepped slot antenna is proposed. The proposed antenna consists of a stepped slot etched on the ground plane as radiation part and a microstrip feed-line with rectangular patch on the top plane for wideband impedance matching. The proposed antenna is designed and fabricated on the FR4 substrate with dielectric constant of 4.3, thickness of 1.6 mm and size of $28.5{\times}32mm^2$. The measured impedance bandwidth (${\mid}S_{11}{\mid}{\leq}-10dB$) of the fabricated antenna is 7.99 GHz(3.01~11 GHz) which is sufficient to cover UWB band (3.1 ~ 10.6 GHz). In particular, it has been observed that antenna has a good omnidirectional radiation patterns and high gain over the entire frequency band of interest even though the size of the proposed antenna is reduced to half when compared with the previous antenna.

Modified Cross-Aperture Coupled Microstrip Circular Polarization Array Antenna for WLAN (WLAN 대역의 변형된 십자형 개구 결합 마이크로스트립 원형 편파 배열 안테나)

  • Seo, Yong-Seok;Ahn, Jung-Mo;Jung, Jin-Woo;Lee, Hyeon-Jin;Lim, Yeong-Seog
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1316-1324
    • /
    • 2009
  • In this paper, cross-aperture coupled microstrip circular polarization antenna is proposed for 5.8 GHz WLAN(Wireless Local Area Network). A single antenna consists of square patch and slots are located in series feed line with $\lambda_g$/4 phase different which make current direction maximum and minimum repeatedly to generate RHCP(Right Handed Circularly Polarization). We are proposed new structure that removed the section which intersected at a right angle and were composed to four separated slots. The proposed cross slots reduce back lobe of radiation pattern and improve antenna gain. Impedance bandwidth of the manufactured $2\times2$ array antenna is from 5.67 to 5.95 GHz and the maximum radiation gain is 10.59 dBi.

Analysis of Wideband Microstrip Slot Antenna with Cross-shaped Feedline using 2-layer Dielectrics (2층 유전체를 사용한 십자형 급전선을 갖는 광대역 마이크로스트립 슬롯 안테나의 해석)

  • 장용웅;신호섭
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.2
    • /
    • pp.69-74
    • /
    • 2000
  • The bandwidth of microstrip slot antenna with T-shaped feed line was a wider than one of the conventional feeding structure. When the slot antenna with bi-directional radiator wants to radiate only one direction, the reflector must be set up seperately. But this antenna doesn't need set up reflector. And then we proposed to a new method of a directional slot radiator with a cross-shaped feedline including the reflector using 2-layers dielectric materials. It is calculated waves and electric field distribution in the time domain by using FDTD method. We also are calculated return loss, VSWR, input impedance, and radiation pattern in the frequency domain by Fourier transforming the time domain results, respectively. It was found that the bandwidth of this antenna changes as length($\I_s$) and width($\W_s$) of slot, length of the horizontal feedline($\I_d$), length of the vertical feedline($\I_u$) and offset sensitively. After optimizing the parameters of design, the maximum bandwidth was measured as 1,850MHz at the center frequency 2.5 GHz.

  • PDF