• Title/Summary/Keyword: Microstip Patch Antenna

Search Result 7, Processing Time 0.022 seconds

Approximate analysis of rectangular microstrip patch antenna located in a rectangular waveguide (직사각형 도파관내에 놓여 있는 사각형 마이크로스트립 패치 안테나의 근사적 해석)

  • 박동국;이대성;황학인
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.12
    • /
    • pp.8-13
    • /
    • 1997
  • In this paper, the input impedance and efficiency of rectangulr microstip patch antenna located inside a rectangular wavegudie is calculated by using the cavity model and the mode excited by te patch antenna which is modeled as an equivanlent surface magnetic current on the conducting plate. Measured return losses of a rectangular microstrip patch antenna tuned at 5.93 GHz in the free space and inside the retangular waveguide are compared and found to be in good agreement with calculated results.

  • PDF

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications

  • Kim, Ji-Hyuk;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.204-209
    • /
    • 2005
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates are used to realize small size and broadband characteristics. The microstrip patch is divided into 3 pieces and each patch is connected to each other using a metal microstrip line. The fabrication process is simple and only one mask is needed. Two types of microtrip antennas are fabricated. Type A is the micros trip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8^{*}12^{*}2mm^{3}$ and the experimental results show that the antenna type A and type B have the bandwidth of 420 MHz at 5.3 GHz and 480 MHz at 5.66 GHz, respectively.

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim, Ji-Hyuk;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.603-604
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer of high and low dielectric substrates are used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication process is very simple and only one mask is needed. Two types of microtrip antennas are fabricated. Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8*12*2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively.

  • PDF

Analysis of traveling wave antenna using rectangular microstip patch array (구형 마이크로스트립 패치 배열을 이용한 진행파 안테나의 특성 해석에 관한 연구)

  • 안광진;윤상원;장익수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.10
    • /
    • pp.31-38
    • /
    • 1994
  • In this paper, the leaky wave readiation characteristics of a microstrip rectangular patch array is presented. The reflection and transmission characteristics are analyzed using the equivalent transmission line method. Since the leaky wave is generated from the periodic array, using the Floquet'theorem, leaky wave frequency range is predicted and confirmed by the measured reflection and transmission characterstics of the array. A 17 element microstrip patch array at X-Band is designed and tested. Teh scattering Characteristics show good agreement woth those obtained from the equivalent transmission line analysis. The radiatio characteristics at 10GHz using this method show about 3${\circ}$ shift in main lobe angle compared with measured results.

  • PDF

A Small Size Broadband MEMS Antenna for 5 GHz WLAN Applications (5 GHz 무선랜 응용을 위한 소형 광대역 MEMS 안테나)

  • Kim Ji-Hyuk;Kim Hyeon Cheol;Chun Kukjin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.2 s.344
    • /
    • pp.81-87
    • /
    • 2006
  • A small size broadband microstrip patch antenna with small ground plane has been fabricated using MEMS. Multiple layer substrates we used to realize small size and broadband characteristics. The microstrip patch is divided into 4 pieces and each patch is connected to each other using a metal microstrip line. The fabrication please process is simple and only one mask is needed. Two types of microtrip antennas are fabrication Type A is the microstrip antenna with metal lines and type B is the microstrip antenna without metal lines. The size of proposed microstip antenna is $8{\times}12{\times}2mm^3$ and the experimental results show that the antenna type A and type B have the bandwidth of 420MHz at 5.3 GHz and 480MHz at 5.66 GHz, respectively

Design and Simulation of an On-body Microstrip Patch Antenna for Lower Leg Osteoporosis Monitoring (하지 골다공증 감시를 위한 온-바디 마이크로 스트립 패치 안테나의 설계 및 모의실험)

  • Kim, Byung-Mun;Yun, Lee-Ho;Lee, Sang-Min;Park, Young-Ja;Hong, Jae-Pyo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.763-770
    • /
    • 2021
  • In this paper, in order to exclude the influence of BAN(Body Area Network) signals operating in the ISM band, the design and optimization process of an on-body microstrip patch antenna operating at 4.567 GHz is presented. The antenna for the monitoring of the lower legs with cancellous osteoporosis is designed to be lightweight and compact with improved return loss and bandwidth. The structure around the applied lower leg consisted of a five-layer dielectric plane. Taking into account losses, the complex dielectric constant of each layer is calculated using multi Cole-Cole model parameters, whereas a unipolar model is used for normal or osteoporotic cancellous bones. The return loss of the coaxial feed antenna on the phantom is -67.26 dB at 4.567 GHz, and in the case of osteoporosis, at the same frequency the return loss difference is 35.88 dB, and the resonance frequency difference is about 7 MHz.

Leg Fracture Recovery Monitoring Simulation using Dual T-type Defective Microstrip Patch Antenna (쌍 T-형 결함 마이크로스트립 패치 안테나를 활용한 다리 골절 회복 모니터링 모의실험)

  • Byung-Mun Kim;Lee-Ho Yun;Sang-Min Lee;Yeon-Taek Park;Jae-Pyo Hong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.587-594
    • /
    • 2023
  • In this paper, we present the design and optimization process of an on-body microstrip patch antenna with a paired T-type defect for monitoring fracture recovery of human legs. This antenna is designed to be light, thin and compact despite the improvement of return loss and bandwidth performance by adjusting the size of the T-type defect. The structure around the applied human leg is structured as a 5-layer dielectric plane, and the complex dielectric constant of each layer is calculated using the 4-pole Cole-Cole model parameters. In a normal case without bone fracture, the return loss of the on-body antenna is -66.71dB at 4.0196GHz, and the return loss difference ΔS11 is 37.95dB when the gallus layer have a length of 10.0mm, width of 1.0mme, and height of 2.0mm. A 3'rd degree polynomial is presented to predict the height of the gallus layer for the change in return loss, and the polynomial has a very high prediction suitability as RSS = 1.4751, R2 = 0.9988246, P-value = 0.0001841.