• Title/Summary/Keyword: Microscrew implant

Search Result 9, Processing Time 0.023 seconds

Histologic and biomechanical characteristics of orthodontic self-drilling and self-tapping microscrew implants (Self drilling과 Self-tapping microscrew implants의 조직학적 및 생역학적인 비교)

  • Park, Hyo-Sang;Yen, Shue;Jeoung, Seong-Hwa
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Objective: The purpose of this study was to compare the histological and biomechanical characteristics of self-tapping and self-drilling microscrew implants. Methods: 112 microscrew implants (56 self-drilling and 56 self-tapping) were placed into the tibia of 28 rabbits. The implants were loaded immediately with no force, light (100 gm), or heavy force (200 gm) with nickel-titanium coil springs. The animals were sacrificed at 3- and 5-weeks after placement and histologic and histomorphometric analysis were performed under a microscope. Results: All microscrew implants stayed firm throughout the experiment. There was no significant difference between self-drilling and self-tapping microscrew implants both in peak insertion and removal torques. Histologic examinations showed there were more defects in the self-tapping than the self-drilling microscrew implants, and newly formed immature bone was increased at the interface in the self-tapping 5-week group. There was proliferation of bone towards the outer surface of the implant and/or toward the marrow space in the self-drilling group. Histologically, self-drilling microscrew implants provided more bone contact initially but the two methods became similar at 5 weeks. Conclusion: These results indicate the two methods can be used for microscrew implant placement, but when using self-tapping microscrew implants, it seems better to use light force in the early stages.

Clinical study on success rate of microscrew implants for orthodontic anchorage (교정치료 고정원으로서 Microscrew implants의 성공률에 대한 임상적 연구)

  • Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.33 no.3 s.98
    • /
    • pp.151-156
    • /
    • 2003
  • To provide some guideline for microscrew implants, 73 patients that received a total of 180 mini- or microscrew implants were scrutinized. The overall success rate was $93.3\%$ (168 among 180 mini- or microscrew implants) and the mean period of utilization was 15.8 months. Microscrew implants in the UB group (maxillary buccal area) succeeded at a rate of $94.6\%$ (87 among 92), mini- or microscrew implants in the LB group (mandibular buccal area) succeeded $96.6\%$ of the time (56 out of 58), while microscrew implants in the UP group (maxillary palatal area) had a $100\%$ success rate (11 out of 11), and mini- or microscrew implants in the LR group (retromolar area) succeeded in $73.7\%$ of cases (14 among 19). This study might indicate that microscrew implants can be used successfully as orthodontic anchorage in daily orthodontic practice.

The skeletal cortical anchorage using titanium microscrew implants (Titanium microscrew implant를 이용한 skeletal cortical anchorage)

  • Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.699-706
    • /
    • 1999
  • Anchorage plays an important role in orthodontic treatment. Endosseous implants may be considered adequate firm anchorage. However, clinicians have hesitated to use endosseous implants as orthodontic anchorage because of limited implantation space, high cost, and long waiting period before osseointegration occurs. Recently, some clinicians have tried to use titanium miniscrews and microscrews in treatment due to their many advantages such as ease of insertion and removal, low cost, immediate loading, and the ability to place microscrews in any area of alveolar bone. The author treated a case with skeletal cortical anchorage using titanium microscrew implants. During six months of orthodontic force application from skeletal cortical anchorage, the author could get 4 mm bodily retraction and intrusion of upper anterior teeth. The most outstanding result was a 1.5 mm posterior refraction of the upper posterior teeth. The titanium microscrew implants had remained firm and stable throughout treatment. These results indicate that skeletal cortical anchorage might be a very good option.

  • PDF

An Anatomical Study using CT Images for the Implantation of Micro-implants (CT 이미지를 사용한 Micro-implants 식립을 위한 매부학적 연구)

  • Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.32 no.6 s.95
    • /
    • pp.435-441
    • /
    • 2002
  • Surgical microscrews were introduced and used as one method to provide absolute anchorage. Some clinicians implanted microscrews or miniscrews into the basal bone below the roots of the teeth to evade damage to the roots. Because the implanted microscrews were positioned too low the applied force was insufficient to retract the anterior teeth or protract the posterior teeth, and the use of microscrews or miniscrews seemed limited in applying vertical force. However Park implanted microscrews(micro-implants (1.2mm in diameter)) into the alveolar bone between the roots of the posterior teeth to change the direction of the applied force toward increasing horizontal component of the force. Moreover, these microscrew implants were positioned in the alveolar bone between the roots without causing discernable damage to the roots. This study was performed to provide guidelines and anatomic data to assist in the determination of the safe location for micro-implants. By measuring the CT images from 21 patients, anatomical data were obtained which were then used as a guide to determine the location for the implantation of micro-implants. The thickness of the cortical bones at the alveaolar bone region increased from the anterior to the posterior teeth area. The mandibular posterior teeth area showed thicker cortical bone. A greater distance was observed in distance between the second premolar root and first molar root in the upper arch, between the first molar root and the second molar root in the lower arch. The alveolar bone of the posterior teeth area is considered the best site for the implantation of micro-implants.

Stress distribution following face mask application using different finite element models according to Hounsfield unit values in CT images (CT상의 HU 수치에 따른 상악골 전방견인 효과의 유한요소 분석)

  • Chung, Dong-Hwa
    • The korean journal of orthodontics
    • /
    • v.36 no.6
    • /
    • pp.412-421
    • /
    • 2006
  • Objective: The result of finite element analysis depends on material properties, structural expression, density of element, and boundar or loading conditions. To represent proper elastic behavior, a finite element model was made using Hounsfield unit (HU) values in CT images. Methods: A 13 year 6 month old male was used as the subject. A 3 dimensional visualizing program, Mimics, was used to build a 3D object from the DICOM file which was acquired from the CT images. Model 1 was established by giving 24 material properties according to HU. Model 2 was constructed by the conventional method which provides 2 material properties. Protraction force of 500g was applied at a 45 degree downward angle from Frankfort horizontal (FH) plane. Results: Model 1 showed a more flexible response on the first premolar region which had more forward and downward movement of the maxillary anterior segment. Maxilla was bent on the sagittal plane and frontal plane. Model 2 revealed less movement in all directions. It moved downward on the anterior part and upward on the posterior part, which is clockwise rotation of the maxilla. Conclusion: These results signify that different outcomes of finite element analysis can occur according to the given material properties and it is recommended to use HU values for more accurate results.

A new protocol of the sliding mechanics with Micro-Implant Anchorage(M.I.A.) (Micro-Implant Anchorage(MIA)를 이용한 Sliding mechancis)

  • Park, Hyo-Sang
    • The korean journal of orthodontics
    • /
    • v.30 no.6 s.83
    • /
    • pp.677-685
    • /
    • 2000
  • Anchorage plays an important role in orthodontic treatment. Because of limited anchorage Potential and acceptance problems of intra- or extraoral anchorage aids, endosseous implants have been suggested and used. However, clinicians have hesitated to use endosseous implants as orthodontic anchorage because of limited implantation space, high cost, and long waiting period for osseointegration. Titanium miniscrews and microscrews were introduced as orthodontic anchorage due to their many advantages such as ease of insertion and removal, low cost, immediate loading, and their ability to be placed in any area of the alveolar bone. In this study, a skeletal Class II Patient was treated with sliding mechanics using M.I.A.(micro-implant anchorage). The maxillary micro-implants provide anchorage for retraction of the upper anterior teeth. The mandibular micro-implants induced uprighting and intrusion of the lower molars. The upward and forward movement of the chin followed. This resulted in an increase of the SNB angle, and a decrease of the ANB angle. The micro-implants remained firm and stable throughout treatment. This new approach to the treatment of skeletal Class II malocclusion has the following characteristics . Independent of Patient cooperation. . Shorter treatment time due to the simultaneous retraction of the six anterior teeth . Early change of facial Profile motivating greater cooperation from patients These results indicate that the M.I.A. can be used as anchorage for orthodontic treatment. The use of M.I.A. with sliding mechanics in the treatment of skeletal Class II malocclusion increases the treatment simplicity and efficiency.

  • PDF