• 제목/요약/키워드: Microscopy, polarization

검색결과 179건 처리시간 0.025초

Synthesis and Characterization of banana-shaped achiral molecules

  • Lee, Chong-Kwang;Lee, Chong-Kwang;Kwon, Soon-Sik;Kim, Tae-Sung;Shin, Sung-Tae;Choi, Suk;Choi, E-Joon;Kim, Sea-Yun;Kim, Jae-Hoon;Zin, Wang-Choel;Kim, Dae-Cheol;Chien, Liang-Chy
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.504-508
    • /
    • 2003
  • New banana-shaped achiral compounds, 4-chloro-1,3-phenylene bis [4-4(3-fluoro-9-alkenyloxy) phenyl-iminomethylbenzoate]s and 4-chloro-1,3-phenylene bis [4-4-(3-fluoro-10-alkanyloxy) phenyliminomethyl benzoate]s were synthesized by varying the substituent (X=H, F, or Cl); their electrooptical properties are described. The smectic phases, including a switchable chiral smectic C ($SmC^{\ast}$) phase, were characterized by differential scanning calorimetry, polarizing optical microscopy, and triangular method. The presence of vinyl end group at the terminals of linear side wings in the banana-shaped molecules induced a decrease in melting temperature. The smectic phase having the undecenyloxy group such $as-(CH_2)_9CH=CH_2$ showed ferroelectric switching, and its value of spontaneous polarization on reversal of an applied electric field was 2250 $nC/cm^2$, while the value of spontaneous polarization of the smectic phase having the decanyloxy group such as $-(CH2)_9CH_3$ was 3700 $nC/cm^2$. We could obtain the ferroelectric phase with low isotropic temperature by varying the end group at the terminals of linear side wings in the banana-shaped achiral molecules.

  • PDF

Crystal Structure and Dielectric Responses of Pulsed Laser Deposited (Ba, Sr)$TiO_3$ Thin Films with Perovskite $LaNiO_3$ Metallic Oxide Electrode

  • Lee, Su-Jae;Kang, Kwang-Yong;Jung, Sang-Don;Kim, Jin-Woo;Han, Seok-Kil
    • The Korean Journal of Ceramics
    • /
    • 제6권3호
    • /
    • pp.258-261
    • /
    • 2000
  • Highly (h00)-oriented (Ba, Sr)TiO$_3$(BST) thin films were grown by pulsed laser deposition on the perovskite LaNiO$_3$(LNO) metallic oxide layer as a bottom electrode. The LNO films were deposited on SiO$_2$/Si substrates by rf-magnetron sputtering method. The crystalline phases of the BST film were characterized by x-ray $\theta$-2$\theta$, $\omega$-rocking curve and $\psi$-scan diffraction measurements. The surface microsturcture observed by scanning electron microscopy was very dense and smooth. The low-frequency dielectric responses of the BST films grown at various substrate temperatures were measured as a function of frequency in the frequency range from 0.1 Hz to 10 MHz. The BST films have the dielectric constant of 265 at 1 kHz and showed multiple dielectric relaxation at the low frequency region. The origin of these low-frequency dielectric relaxation are attributed to the ionized space charge carriers such as the oxygen vacancies and defects in BST film, the interfacial polarization in the grain boundary region and the electrode polarization. We studied also on the capacitance-voltage characteristics of BST films.

  • PDF

Corrosion Behavior of Ti-6Al-4V Alloy after Plasma Electrolytic Oxidation in Solutions Containing Ca, P and Zn

  • Hwang, In-Jo;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.120-120
    • /
    • 2016
  • Ti-6Al-4V alloy have been used for dental implant because of its excellent biocompatibility, corrosion resistance, and mechanical properties. However, the integration of such implant in bone was not in good condition to achieve improved osseointergraiton. For solving this problem, calcium phosphate (CaP) has been applied as coating materials on Ti alloy implants for hard tissue applications because its chemical similarity to the inorganic component of human bone, capability of conducting bone formation and strong affinity to the surrounding bone tissue. Various metallic elements, such as strontium (Sr), magnesium (Mg), zinc (Zn), sodium (Na), silicon (Si), silver (Ag), and yttrium (Y) are known to play an important role in the bone formation and also affect bone mineral characteristics, such as crystallinity, degradation behavior, and mechanical properties. Especially, Zn is essential for the growth of the human and Zn coating has a major impact on the improvement of corrosion resistance. Plasma electrolytic oxidation (PEO) is a promising technology to produce porous and firmly adherent inorganic Zn containing $TiO_2(Zn-TiO_2)$coatings on Ti surface, and the a mount of Zn introduced in to the coatings can be optimized by altering the electrolyte composition. In this study, corrosion behavior of Ti-6Al-4V alloy after plasma electrolytic oxidation in solutions containing Ca, P and Zn were studied by scanning electron microscopy (SEM), AC impedance, and potentiodynamic polarization test. A series of $Zn-TiO_2$ coatings are produced on Ti dental implant using PEO, with the substitution degree, respectively, at 0, 5, 10 and 20%. The potentiodynamic polarization and AC impedance tests for corrosion behaviors were carried out in 0.9% NaCl solution at similar body temperature using a potentiostat with a scan rate of 1.67mV/s and potential range from -1500mV to +2000mV. Also, AC impedance was performed at frequencies ranging from 10MHz to 100kHz for corrosion resistance.

  • PDF

Antiferroelectric Liquid Crystal from Bent-Core Molecule with Vinyl End Group

  • Lee, Chong-Kwang;Kwon, Soon-Sik;Kim, Tae-Sung;Shin, Sung-Tae;Choi, Hong;Choi, E. Joon;Kim, Sea-Yun;Zin, Wang-Choel;Kim, Dae-Choel;Chien, Liang-Chy
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권8호
    • /
    • pp.1171-1176
    • /
    • 2004
  • Three banana-shaped achiral compounds, 4-chloro-1,3-phenylene bis [4-{4-(undecenyloxy)phenyl imino-methyl} benzoate] derivatives, were synthesized with variation of a substituent (x=H, F, Cl); their antiferro-electric properties are described. The smectic mesophases, including a switchable chiral smectic C(Sm $C^{\ast}$) phase, were characterized by differential scanning calorimetry, polarizing optical microscopy, triangular wave method, and X-ray diffractometry. The presence of vinyl groups at the terminals of linear side wings in the banana-shaped achiral molecules induced a decrease in melting temperature and formation of the switchable Sm $C^{\ast}$ phase in the melt. The smectic phase having a lateral fluorine-substituent at 3-position of the Schiff's base moiety showed antiferroelctric switching, and the value of spontaneous polarization on reversal of an applied electric field was 250 nC/$cm^2$ .

저합금강의 부식속도에 미치는 시편 면적의 영향 (Effect of Specimen Area on the Corrosion Rate of Low Alloy Steel)

  • 김민준;장영욱;유윤하;김종집;김정구
    • 전기화학회지
    • /
    • 제13권2호
    • /
    • pp.96-102
    • /
    • 2010
  • 본 연구에서는 균일부식이 발생하는 저합금강의 노출면적에 따른 부식속도의 변화를 관찰하고 이에 대한 원인을 규명하고자 하였다. 다양한 표면적을 지닌 동일한 저합금강 시편의 부식속도를 전기 화학적 임피던스 분광법, 직선분극저항 측정법, 동전위 분극 시험법을 이용하여 산출하였다. 또한 전자주사현미경, X선 광전자 분광법 및 X선 전자탐침 미량분석을 이용하여 표면분석을 실시하였다. 전기화학적 시험 결과 모든 시험법에서 시편의 크기가 증가할수록 부식속도가 높게 산출되었으며, 표면분석을 통해 망간과 황으로 구성된 화합물이 존재하는 영역에서 우선적으로 부식이 발생하며, 이 화합물과 철 또는 구리 산화물이 소양극-대음극의 미세 갈바닉 셀을 구성함을 확인하였다. 이러한 효과는 시편 크기에 비례하여 증가하였으며, 국부적인 부식이 우선적으로 발생한 후, 부식생성물이 표면을 덮게 되어 점차 균일부식의 형태로 전환하게 된다.

졸-겔법으로 증착된 $(Bi,Nd)_4Ti_3O_{12}$ 박막의 미세구조와 강유전성에 대한 연구 (Microstructure and Ferroelectric Properties of Randomly Oriented Polysrystalline $(Bi,Nd)_4Ti_3O_{12}$ Thin Films Prepared by Sol-Gel Method)

  • 강동균;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.296-296
    • /
    • 2007
  • Ferroelectric neodymium-substituted $Bi_4Ti_3O_{12}$(BTO) thin films have been successfully deposited on Pt/Ti/$SiO_2$/Si substrate by a sol-gel spin-coating process and the effect of crystallization temperature on their microstructure and ferroelectric properties were studied systematically. $Bi(TMHD)_3$, $Nd(TMHD)_3$, $Ti(O^iPr)_4$ were used as the precursors, which were dissolved in 2-methoxyethanol. The thin films were annealed at various temperatures from 600 to $720^{\circ}C$ in oxygen ambient for 1 hr, which was followed by post-annealed for 1 hr after depositing a Pt electrode to enhance the electrical properties. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to analyze the crystallinity and surface morphology of layered perovskite phase, respectively. The crystallinity of the BNT films was improved and the average grain size increased as the crystallization temperature increased from 600 to $720^{\circ}C$ at an interval of $40^{\circ}C$. The polarization values of the films were a monotonous function of the crystallization temperature. The remanent polarization value of the BNT thin films annealed at $720^{\circ}C$ was $24.82\;{\mu}C/cm^2$ at an applied voltage of 5 V.

  • PDF

알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가 (Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution)

  • 김명환;이만식;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

Creq/Nieq비에 따른 AISI 304L 및 AISI 316L 스테인리스강 용접부의 미세조직 및 전기화학적 양극분극 평가 (Evaluations of Microstructure and Electrochemical Anodic Polarization of AISI 304L and AISI 316L Stainless Steel Weld Metals with Creq/Nieq Ratio)

  • 김연희;장아영;강동훈;고대은;신용택;이해우
    • 대한금속재료학회지
    • /
    • 제48권12호
    • /
    • pp.1090-1096
    • /
    • 2010
  • This pitting corrosion study of welded joints of austenitic stainless steels (AISI 304L and 316L) has addressed the differentiating solidification mode using three newly introduced filler wires with a flux-cored arc welding process (FCAW). The delta ferrite (${\delta}$-ferrite) content in the welded metals increased with an increasing equivalent weight ratio of chromium/nickel ($Cr_{eq}/Ni_{eq}$). Ductility dip cracking (DDC) was observed in the welded metal containing ferrite with none of AISI 304L and 0.1% of AISI 316L. The potentiodynamic anodic polarization results revealed that the $Cr_{eq}/Ni_{eq}$ ratio in a 3.5% NaCl solution didn't much affect the pitting potential ($E_{pit}$). The AISI 316L welded metals with ${\ddot{a}}$-ferrite content of over 10% had a superior $E_{pit}$ value. Though the AISI 316L welded metal with 0.1% ferrite had larger molybdenum contents than AISI 304L specimens, it showed a similar $E_{pit}$ value because the concentration of chloride ions and the corrosion product induced severe damage near the DDC.

플립칩 패키징용 Sn-0.7Cu 전해도금 초미세 솔더 범프의 제조와 특성 (Fabrication and Characteristics of Electroplated Sn-0.7Cu Micro-bumps for Flip-Chip Packaging)

  • 노명훈;이희열;김원중;정재필
    • 대한금속재료학회지
    • /
    • 제49권5호
    • /
    • pp.411-418
    • /
    • 2011
  • The current study investigates the electroplating characteristics of Sn-Cu eutectic micro-bumps electroplated on a Si chip for flip chip application. Under bump metallization (UBM) layers consisting of Cr, Cu, Ni and Au sequentially from bottom to top with the aim of achieving Sn-Cu bumps $10\times10\times6$ ${\mu}m$ in size, with 20${\mu}m$ pitch. In order to determine optimal plating parameters, the polarization curve, current density and plating time were analyzed. Experimental results showed the equilibrium potential from the Sn-Cu polarization curve is -0.465 V, which is attained when Sn-Cu electro-deposition occurred. The thickness of the electroplated bumps increased with rising current density and plating time up to 20 mA/$cm^2$ and 30 min respectively. The near eutectic composition of the Sn-0.72wt%Cu bump was obtained by plating at 10 mA/$cm^2$ for 20 min, and the bump size at these conditions was $10\times10\times6$ ${\mu}m$. The shear strength of the eutectic Sn-Cu bump was 9.0 gf when the shearing tip height was 50% of the bump height.

Effect of Pseudomonas aeruginosa Strain ZK Biofilm on the Mechanical and Corrosion Behavior of 316L Stainless Steel and α-brass

  • Farooq, A.;Zubair, M.;Wadood, H.Z.;Deen, K.M.
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.431-439
    • /
    • 2021
  • This research work aims to investigate the effect of the aerobic bacterium, Pseudomonas aeruginosa on the mechanical and electrochemical properties of the 316L stainless steel and α-brass. These properties of both the alloys were determined after 7 days of exposure to the controlled and inoculated media at 37℃. The microstructural and electrochemical test results revealed the deleterious effects of Pseudomonas aeruginosa. After exposure to the inoculated medium, the scanning electron microscopy (SEM) results showed the larger pitting and formation of relatively dense biofilm on α-brass compared to 316L stainless steel. The tensile strength and hardness of 316L stainless steel were slightly affected after exposure to the controlled and inoculated media. After exposure to the controlled medium and inoculated media, the tensile strength of the α-brass was least affected but a significant decrease in the hardness (from 165 HV to 124 HV) was observed due to the severe attack induced by the Pseudomonas aeruginosa. Similarly, the open-circuit potential of the 316L stainless steel in the inoculated medium was measured to be less active (-410 mV vs Ag/AgCl) than α-brass (-550 mV vs Ag/AgCl). In the inoculated medium, potentiodynamic polarization curves confirmed the severe attack of Pseudomonas aeruginosa on α-brass (7.15 × 10-2 mm/year) compared to 316L stainless steel which registered a corrosion rate of 5.14 × 10-4 mm/year.