• 제목/요약/키워드: Microscopy, polarization

검색결과 179건 처리시간 0.031초

Effects of lanthanum doping on ferroelectric properties of direct-patternable $Bi_{4-x}La_xTi_3O_{12}$ films prepared by photochemical metal-organic deposition

  • Park, Hyeong-Ho;Kim, Hyun-Cheol;Park, Hyung-Ho;Kim, Tae-Song
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.287-287
    • /
    • 2007
  • The ferroelectric and electric properties of UV-irradiated bismuth lanthanum titanate (BLT) films prepared using photosensitive starting precursors were characterized. The effects of lanthanum doping on ferroelectric and electric properties were investigated by polarization-electric field hysteresis loops and leakage current-voltage measurements. X-ray diffractometer and ellipsometry were served to provide the information about the crystalline structure and thickness of the films after annealing. The images of the surface microstructure and direct-patterned BLT films were observed by using scanning electron microscopy. The effects of lanthanum doping on the electric properties of direct-pattern able BLT films and their direct-patterning were studied.

  • PDF

PVD법에 의해 Zn 전기도금강판에 제작한 Mg막의 내식 메카니즘 (Anti-Corrosive Mechanism of Mg Thin Films Prepared by PVD Method on Electroplated Zn Steel Substrates)

  • 백상민;배일용;문경만;김기준;이명훈
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 춘계학술발표회 초록집
    • /
    • pp.153-154
    • /
    • 2007
  • Mg thin films were prepared by PVD method on electroplated Zn steel substrate. And the influence of gas pressure on their morphology and crystal orientation of the deposited films were investigated by scannig electron microscopy(SEM) and X-ray diffraction(XRD), respectively. In addition, the effect of corrosion resistance of these films as a funtion of morphology and crystal orientation was evaluated by anodic polarization test. From the measured results, it is investigated that the film of granular structure which deposited in condition of high gas pressure had the highest corrosion resistance.

  • PDF

Effect of Alloying Elements on the Electrochemical Characteristics of an Al Alloy Electrode for Al-air Batteries in 4 M NaOH solution

  • Choi, Yun-Il;Kalubarme, R.S.;Jang, Hee-Jin;Park, Chan-Jin
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.839-844
    • /
    • 2011
  • We examined the effects of alloying elements such as Fe, Ga, In, Sn, Mg, and Mn on the electrochemical characteristics of Al-based alloys for Al-air batteries by potentiodynamic polarization tests and electrochemical impedance spectroscopy. The corrosion potential of an Al anode was lowered by the addition of Ga and Sn, resulting in an increase in the cell voltage compared with a pure Al electrode. Fe was not beneficial to improve the electrochemical properties of the Al anode in that it caused a decrease in the cell voltage and reduced corrosion rate slightly. In, Mn, Sn, and Mg decreased the corrosion rate of the Al alloys, while Ga enhanced corrosion significantly and accelerated consumption of the anode.

고에너지 밀도 바나듐 레독스 흐름 전지를 위한 망간산화물 촉매와 다공성 탄소 기재의 시너지 효과 (Synergistic Effect of the MnO Catalyst and Porous Carbon Matrix for High Energy Density Vanadium Redox Flow Battery)

  • 김민성;고민성
    • 한국표면공학회지
    • /
    • 제52권3호
    • /
    • pp.150-155
    • /
    • 2019
  • The carbon electrode was modified through manganese-catalyzed hydrogenation method for high energy density vanadium redox flow battery (VRFB). During the catalytic hydrogenation, the manganese oxide deposited at the surface of the carbon electrode stimulated the conversion reaction from carbon to methane gas. This reaction causes the penetration of the manganese and excavates a number of cavities at electrode surface, which increases the electrochemical activity by inducing additional electrochemically active site. The formation of the porous surface was confirmed by the scanning electron microscopy (SEM) images. Finally, the electrochemical performance test of the electrode with the porous surface showed lower polarization and high reversibility in the cathodic reaction compared to the conventional electrode.

알루미늄 6061 합금 양극산화 후 열처리에 따른 표면 특성 관찰 (Effects of Heat Treatment on Surface Properties of Aluminum 6061 Alloy After Anodization)

  • 이승민;정찬영
    • Corrosion Science and Technology
    • /
    • 제21권6호
    • /
    • pp.495-502
    • /
    • 2022
  • Anodization is a representative electrochemical surface treatment method that can improve both heat resistance and corrosion resistance by forming an anodization film on the surface of the aluminum. However, these properties can be changed after an additional heat treatment process. In this study, Al 6061 was subjected to an anodization process at 60 V for 1 hour, 5 hours, or 9 hours. An additional heat treatment process was performed at 500 ℃ for 30 minutes. Field emission scanning electron microscopy (FE-SEM) analysis revealed that the thickness of the anodized film was increased in proportion to the anodization time. Both pore size and pore diameter of the anodized film was also increased after anodization. After an additional heat treatment process, there were no significant changes in the thickness, pore size, or pore diameter of the anodized film. Heat resistance was confirmed through thermal analysis and chemical resistance was evaluated with a potentiodynamic polarization test.

제 1 인산 암모늄 사용량에 따른 시멘트 모르타르의 철근방청성능 평가에 관한 실험적 연구 (Mitigation of Steel Rebar Corrosion Embedded in Mortar using Ammonium Phosphate Monobasic as Hreen Inhibitor)

  • 트란 득 탄;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2021년도 봄 학술논문 발표대회
    • /
    • pp.112-113
    • /
    • 2021
  • Phosphate based inhibitor is playing a decisive role in inhibiting the corrosion of steel rebar in chloride condition. We have used different amount of ammonium phosphate monobasic (APMB) as corrosion inhibitor in mortar with different amount of chloride ions. The compressive strength, flexural strength, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization resistance (PPR), scanning electron microscopy (SEM) and Raman spectroscopy were performed to access the effect of inhibitor on corrosion resistance. As the amount of inhibitor is increased, the compressive strength increased. The electrochemical results show that as the amount of inhibitor and chloride ions are increased, the total impedance and corrosion resistance of steel rebar increased attributed to the formation of the stable oxide films onto the steel rebar surface. It is suggested that APMB can work in high concentration of chloride ions present in concrete where phosphate ion helps in formation of stable and protective phosphate based oxide film.

  • PDF

인공해양환경에서 플라즈마 아크 용사 공법이 적용된 Al 및 Zn 코팅의 부식 방지 성능 평가 (Anti Corrosive Performance of Al and Zn Coatings Deposited by Plasma Arc Thermal Spray Process in Artificial Ocean Water)

  • 잔낫;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2020년도 가을 학술논문 발표대회
    • /
    • pp.52-53
    • /
    • 2020
  • The thermal spray coating process is being used to protect the metals and alloys from wear, abrasion, fatigue, tribology, and corrosion failure. Therefore, in the present study, Al and Zn was deposited by plasma arc thermal spray process onto the steel substrate and their performance was assessed. The bond adhesion result shows that Al coating has higher value attributed to compact, dense, and less porous compared to Zn coating which contain defects/pores and uneven morphology assessed by scanning electron microscopy (SEM). Electrochemical results show that the Al coating exhibited higher impedance value compared to Zn in artificial ocean water solution at prolonged exposure periods. However, both coatings show the increment in polarization resistance with exposure periods which reveal that porosity of coatings is filled by the corrosion products.

  • PDF

RF 마그네트론 스퍼터링법에 의한 MFM 구조의 $SrBi_2Ta_2O_9$ 박막 특성에 관한 연구 (A study on the characteristics of MEM structure of $SrBi_2Ta_2O_9$ thin films by RE magnetron sputtering)

  • 이후용;최훈상;최인훈
    • 한국진공학회지
    • /
    • 제9권2호
    • /
    • pp.136-143
    • /
    • 2000
  • RF magnetron sputtering법으로 $SrBi_2Ta_2O_9$ (SBT)박막을 상온에서 p-type Si(100) 기판위에 증착하여 DRO 강유전체 메모리(destructive read out ferroelectric random access memory)에 사용되는 강유전체막으로 Pt/SBT/Pt/Ti/$SiO_2$/Si (MFM)구조의 응용가능성을 확인하였다. 구조적인 특징들이 열처리 시간의 변화와 Ar/$O_2$의 가스 유량비의 변화에 따라서 XRD(x-ray diffractometer)에 의해 관찰되었으며 표면 특성은 FE-SEM(field emission scanning electron microscopy)에 의해서 관찰하고 박막의 전기적 특성들은 P-V(polarization-voltage measurement)와 I-V(current-voltage measurement)를 사용하여 관찰하였다. 스퍼터링 증착시 Ar/$O_2$의 가스 유량비는 1:4에서 4:1까지 변화 시켰고 SBT박막은 상온에서 증착시켰다. XRD 측정시 박막들은 SBT의 (105), (110) peak들을 나타내었다. 상온에서 증착시킨 박막은 1시간, 2시간 동안 산소 분위기에서 $800^{\circ}C$ 열처리를 하여 결정화 시켰다. SBT 박막의 P-V곡선은 이력 곡선의 모양을 갖추었으며 비대칭적인 강유전체 특성을 나타내었다. Ar/$O_2$ 가스유량비가 1 : 1, 2 : 1인 경우에 박막의 누설 전류밀도 값이 제일 좋았으며, 그 값은 3V 5V 7V에서 각각 $3.11\times10^{-8} \textrm{A/cm}^2$, $5\times10^{-8}\textrm{A/cm}^2$, $7\times10^{-8}\textrm{A/cm}^2$ 이었다. 열처리 시간을 2시간으로 증가시킨 후, 그들의 전기적 특성과 결정화특성이 개선됨을 확인하였다. AES 분석 및 EPMA분석으로 SBT박막의 깊이 분포 및 조성을 확인하였다.

  • PDF

Maximizing TPBs through Ni-self-exsolution on GDC based composite anode in solid oxide fuel cells

  • 탄제완;이대희;김보경;김주선;문주호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.402.1-402.1
    • /
    • 2016
  • The performance of solid oxide fuel cells (SOFCs) is directly related to the electrocatalytic activity of composite electrodes in which triple phase boundaries (TPBs) of metallic catalyst, oxygen ion conducting support, and gas should be three-dimensionally maximized. The distribution morphology of catalytic nanoparticle dispersed on external surfaces is of key importance for maximized TPBs. Herein in situ grown nickel nanoparticle onto the surface of fluorite oxide is demonstrated employing gadolium-nickel co-doped ceria ($Gd0.2-xNixCe0.8O2-{\delta}$, GNDC) by reductive annealing. GNDC powders were synthesized via a Pechini-type sol-gel process while maximum doping ratio of Ni into the cerium oxide was defined by X-ray diffraction. Subsequently, NiO-GNDC composite were screen printed on the both sides of yttrium-stabilized zirconia (YSZ) pellet to fabricate the symmetrical half cells. Electrochemical impedance spectroscopy (EIS) showed that the polarization resistance was decreased when it was compared to conventional Ni-GDC anode and this effect became greater at lower temperature. Ex situ microstructural analysis using scanning electron microscopy after the reductive annealing exhibited the exsolution of Ni nanoparticles on the fluorite phases. The influence of Ni contents in GNDC on polarization characteristics of anodes were examined by EIS under H2/H2O atmosphere. Finally, the addition of optimized GNDC into the anode functional layer (AFL) dramatically enhanced cell performance of anode-supported coin cells.

  • PDF

메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성 (Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices)

  • 강동훈;최훈상;이종한;임근식;장유민;최인훈
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.