• Title/Summary/Keyword: Microscopy, polarization

Search Result 179, Processing Time 0.027 seconds

Study on the Surface Magnetic Domain Structure of Thin-Gauged 3% Si-Fe Strips using Scanning Electron Microscopy with Polarization Analysis

  • Chai, K.H.;Heo, N.-H.;Na, J.g.;Lee, S.R.;Woo, j.s.
    • Journal of Magnetics
    • /
    • v.3 no.2
    • /
    • pp.44-48
    • /
    • 1998
  • Scanning Electron Microscopy with Polarization Analysis (SEMPA) was used to image the surface magnetic domain structure of the 100 ${\mu}{\textrm}{m}$ thick 3% Si-Fe sheet. The thin-gauged 3% Si-Fe strips with magnetic induction ($B_{10}$) from 1.98 to 1.57 Tesla were prepared via conventional metallurgical processes including melting, hot-and cold-rolling, intermediate annealing and final annealing. Using SEMPA, it was observed that the $B_{10}$ (1.98 T) Tesla sample was almost composed of 180$^{\circ}$ stripe domains which are parallel to rolling direction. On the other hand the 3% Si-Fe sheet with $B_{10}$ (1.57 T) Tesla was composed of large 180$^{\circ}$stripe domains that are slanted about 30$^{\circ}$to the rolling direction and complex magnetic domain structures like tree and zigzag pattern. The 180$^{\circ}$stripe domains, which covered a major part of the sample, had (110)<001> Goss texture parallel to the rolling direction. The domain walls between 180$^{\circ}$stripe domains were the conventional Bloch type walls. On the other hand, the 90$^{\circ}$domains, which covered minor part on edge of the sample, were observed in (200) grains. The domain walls between 90$^{\circ}$domains were the Neel type walls. In high magnification, the elliptical singularity at the Neel walls was clearly observed.

  • PDF

Influence of porosity and cement grade on concrete mechanical properties

  • Huang, Jiandong;Alyousef, Rayed;Suhatril, Meldi;Baharom, Shahrizan;Alabduljabbar, Hisham;Alaskar, Abdulaziz;Assilzadeh, Hamid
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • The given research focuses on examining the effect of relatively humidity (RH) and curing temperature on the hydrates as well as the porosity of calcium sulfoaluminate (CSA) cement pastes. Numerous tests, which consist of mercury intrusion porosimetry (MIP), thermosgravi metric (TG) and X-ray diffraction (XRD) were conducted. Various characterization techniques which include, scanning electron microscopy, Fourier transform microscopy along with X-ray diffraction evaluations were conducted on the samples to examine phase formation and crystallinity, morphology and microstructure along with bond formations and functional groups, respectively. During long-term study, the performance of concrete which consisted of limestone and flash-calcined was close to those from standard Portland cement concrete. Traditional classifications and methods of corrosion were widely used for the assessment of steel in concrete which may get employed to concrete which contains LC3 to recalibrate the range of polarization resistance for passitivity condition. For example, there is up to 79.5% and 146% respective flexural and compressive strengths. Moreover, they developed more advance electrical and thermo-mechanical performance with a substantial reduction in absorption of water of close to 400%. These advantages allow this research crucial to evaluate how these methods can be applied. Additionally, the research evaluates developed and more advanced cement preservation and repair techniques. The conclusion suggests concerted efforts by various stakeholders such as policy makers to enable low-carbon rates.

A Study on the High Temperature Steam Electrolysis Using (La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia Composite Electrodes ((La0.8Sr0.2)0.95MnO3/Yttria Stabilized Zirconia 복합체 전극을 이용한 고온 수증기 전기분해 연구)

  • Ji, Jong-Sup;Kim, Chang-Hee;Kang, Yong;Sim, Kyu-Sung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.627-631
    • /
    • 2005
  • The $(La_{0.8}Sr_{0.2})_{0.95}MnO_3$/yttria-stabilized zirconia (LSM/YSZ) composites were investigated as anode materials for high temperature steam electrolysis using X-ray diffractometry, scanning electron microscopy, galvanodynamic and galvanostatic polarization method. For this purpose, the LSMperovskites were fabricated in powders by co-precipitation method and then were mixed with 8 mol% YSZ powders in different molar ratios. The LSM/YSZ composites were deposited on 8 mol% YSZ electrolyte disks by means of a screen printing method, followed by sintering at temperatures above $1,100^{\circ}C$. From the experimental results, it is concluded that the electrochemical properties of LSM and the LSM/YSZ composites are closely related to their microstructure and operating temperatures.

Electrochemical Study of Three Stainless Steel Alloys and Titanium Metal in Cola Soft Drinks

  • Peralta-Lopez, D.;Sotelo-Mazon, O.;Henao, J.;Porcayo-Calderon, J.;Valdez, S.;Salinas-Solano, G.;Martinez-Gomez, L.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.294-306
    • /
    • 2017
  • Stainless steels and titanium alloys are widely used in the medical industry as replacement materials. These materials may be affected by the conditions and type of environment. In the same manner, soft drinks are widely consumed products. It is of interest for dental industry to know the behavior of medical-grade alloys when these are in contact with soft drinks, since any excessive ion release can suppose a risk for human health. In the present study, the electrochemical behavior of three stainless steel alloys and pure titanium was analyzed using three types of cola soft drinks as electrolyte. The objective of this study was to evaluate the response of these metallic materials in each type of solution (cola standard, light and zero). Different electrochemical techniques were used for the evaluation of the alloys, namely potentiodynamic polarization, linear polarization, and open-circuit potential measurements. The corrosion resistance of the stainless-steel alloys and titanium in the cola soft drinks was provided by the formation of a stable passive film formed by metal oxides. Scanning electron microscopy was used as a complementary technique to reveal corrosion phenomena at the surface of the materials evaluated.

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films Prepared by MOD (MOD 법으로 제작된 Bi3.25La0.75Ti3O12 박막의 강유전 특성)

  • 김경태;김창일;권지운;심일운
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.6
    • /
    • pp.486-491
    • /
    • 2002
  • We have fabricated $Bi_{3.25}La_{0.75}Ti_3O_12$ (BLT) thin films on the Pt/Ti/$SiO_2$/Si substrates using a metalorganic decomposition (MOD) method with annealing temperature from $550^{\circ}C$ to $750^{\circ}C$. The structural properties of BLT films examined by x-ray diffraction (XRD). From XRD analysis. BLT thin films show polycrystalline structure. The layered-perovskite phase was obtained by spin-on films at above $600^{\circ}C$ for 1h. Scanning electron microscopy (SEM) showed uniform surface composed of rodlike grains. The grain size of BLT films increased with increasing annealing temperature. The BLT film annealed at $650^{\circ}C$ was measured to have a dielectric constant of 279, dielectric loss of 1.85(%), remanent polarization of $25.66\mu C/\textrm{cm}^2$, and coercive field of 84.75 kV/cm. The BLT thin films showed little polarization fatigue test up to $3.5{\times}10^9$ bipolar cycling at 5 V and 100 kHz.

Comparative analysis for the corrosion susceptibility of copper alloys in sandy soil

  • Galai, Mouhsine;Benqlilou, Hanane;Touhami, Mohamed Ebn;Belhaj, Tounsi;Berrami, Khalifa;El Kafssaoui, Hassan
    • Environmental Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.164-174
    • /
    • 2018
  • Corrosion of copper alloys (copper, bronze and brass) in soil was evaluated at ambient temperature using various methods such as electrochemical impedance spectroscopy (EIS), polarization curves and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy microanalysis measurements. Three equivalent circuits were separately used to interpret the obtained impedance spectra. The EIS measurements indicated that the polarization resistance of all electrodes increases with increasing the immersion time. SEM showed a presence of three layers of corrosion products with various composition and morphology covering each electrode. In addition, it was found that at 20% of moisture content the $R_p$ values and the current density of all electrodes in the studied soil give the following order: copper > bronze > brass. Good consistency between the data obtained from EIS and PP measurements was observed.

Electrochemical Corrosion and Chemical Mechanical Polishing(CMP) Characteristics of Tungsten Film using Mixed Oxidizer (혼합 산화제를 사용한 텅스텐 막의 전기화학적 부식 및 CMP 특성)

  • Na, Eun-Young;Seo, Yong-Jin;Lee, Woo-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.303-308
    • /
    • 2005
  • In this paper, the effects of oxidants on tungsten chemical mechanical polishing (CMP) process were investigated using three different oxidizers such as Fe(NO₃)₃, KIO₃ and H₂O₂. Moreover, the interaction between the tungsten film and the oxidizer was discussed by potentiodynamic polarization measurement with three different oxidizers, in order to compare the effects of W-CMP and electrochemical characteristics on the tungsten film as a function of oxidizer. As an experimental result, the tungsten removal rate reached a maximum at 5 wt% Fe(NO₃)₃concentration, and when 5 wt% H₂O₂was added in the slurry, the removal rate of W increased. Also, the microstructures of surface layer by atomic force microscopy(AFM) image were greatly influenced by the slurry chemical composition of oxidizers. It was shown that the surface roughness and removal rate of the polished surface were improved in Fe(NO₃)₃than KIO₃. The electrochemical results indicate that the corrosion current density of the 5 wt% H₂O₂ and 5 wt% H₂O/sub 2+/+ 5 wt% Fe(NO₃)₃was higher than the other oxidizers. Therefore, we conclude that the W-CMP characteristics are strongly dependent on the kinds of oxidizers and the amounts of oxidizer additive.

Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films with Eu Contents for Non-volatile Memory Device Application (비휘발성 메모리 소자응용을 위한 Eu 첨가량에 따른 BET 박막의 강유전 특성)

  • Kim, Kyoung-Tae;Kim, Jong-Gyu;Woo, Jong-Chang;Kim, Gwan-Ha;Kim, Chang-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.3
    • /
    • pp.223-227
    • /
    • 2007
  • The effect of Eu contents on the ferroelectric properties of $Bi_{4-x}Eu_xTi_3 O_{12}$ (BET) thin films has been investigated. Bismuth Europium titanate thin films with a Eu contents were prepared on the $Pt/Ti/SiO_2/Si$ substrate by metal-organic decomposition technique. The structure and the morphology of the films were analyzed using X-ray diffraction (XRD) and field emission scanning microscopy (FE-SEM), respectively. From the XRD analysis, it was found that BET thin films have polycrystalline structure, and the layered-perovskite phase is obtained when the Eu contents exceeds 0.2 (x > 0.2). Also, the ferroelectric characteristics of the BET thin films were found to be dependent on the Eu content. Particularly, the BET films doped with x = 0.75 show better ferroelectric properties (remanent polarization 2Pr = 60.99 C/$cm^2$ and only a little polarization fatigue up to $3.5{\times}10^9$ bipolar switching cycling) than those doped with other Eu contents.

Non-volatile Control of 2DEG Conductance at Oxide Interfaces

  • Kim, Shin-Ik;Kim, Jin-Sang;Baek, Seung-Hyub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.211.2-211.2
    • /
    • 2014
  • Epitaxial complex oxide thin film heterostructures have attracted a great attention for their multifunctional properties, such as ferroelectricity, and ferromagnetism. Two dimensional electron gas (2DEG) confined at the interface between two insulating perovskite oxides such as LaAlO3/SrTiO3 interface, provides opportunities to expand various electronic and memory devices in nano-scale. Recently, it was reported that the conductivity of 2DEG could be controlled by external electric field. However, the switched conductivity of 2DEG was not stable with time, resulting in relaxation due to the reaction between charged surface on LaAlO3 layer and atmospheric conditions. In this report, we demonstrated a way to control the conductivity of 2DEG in non-volatile way integrating ferroelectric materials into LAO/STO heterostructure. We fabricated epitaxial Pb(Zr0.2Ti0.8)O3 films on LAO/STO heterostructure by pulsed laser deposition. The conductivity of 2DEG was reproducibly controlled with 3-order magnitude by switching the spontaneous polarization of PZT layer. The controlled conductivity was stable with time without relaxation over 60 hours. This is also consistent with robust polarization state of PZT layer confirmed by piezoresponse force microscopy. This work demonstrates a model system to combine ferroelectric material and 2DEG, which guides a way to realize novel multifunctional electronic devices.

  • PDF

Ferroelectric Liquid Crystals from Bent-Core Molecules with Vinyl End Groups

  • Kwon, Soon-Sik;Kim, Tae-Sung;Lee, Chong-Kwang;Shin, Sung-Tae;Oh, Lee-Tack;Choi, E-Joon;Kim, Sea-Yun;Chien, Liang Chy
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.274-278
    • /
    • 2003
  • New banana-shaped achiral compounds, 1,3-phenylene bis [4-{4-(alkenyloxy) phenyliminomethyl}benzoate]s were synthesized by varying the length of alkenyl group; their ferroelectric properties are described. The smectic mesophases, including a switchable chiral smectic C $(Sm\;C^*)$ phase, were characterized by differential scanning calorimetry, polarizing optical microscopy and triangular wave method. The presence of vinyl groups at the terminals of linear side wings in the banana-shaped achiral molecules containing Schiff's base mesogen induced a decrease in melting temperature and formation of the switchable $(Sm\;C^*)$ phase in the melt. The smectic phases having the octenyloxy group such as $(CH_2)_6CH=CH_2$ showed ferroelctric switching, and their values of spontaneous polarization on reversal of an applied electric field were 120 nC/cm² (X=H) and 225 nC/ cm² (X=F), respectively. We could obtain ferroelectric phases by controlling the number of carbon atom in alkenyloxy chain of a bent-core molecule.