• Title/Summary/Keyword: Micrornachining

Search Result 3, Processing Time 0.015 seconds

Machining Technology of Micro-Patterns in LGP by Powder Blasting (Powder Blasting을 이용한 도광판의 Micro-Pattern 가공기술)

  • Park, D.S;Seong, E.J.;Han, J.Y.;Yoo, W.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.686-691
    • /
    • 2006
  • Powder blasting technique was introduced to micromachine the micro patterns of circular and rectangular shape in LGP mould. The machinability of these patterns and matt treatment by powder blasting were verified. Then a prototype of LGP was injected by the developed LGP mould with micro patterns. Shape analysis of micro patterns and performance test of the injected LGP were carried out. The results showed printless LGP with micro patterns could be produced by just single injection using the mould with micro patterns, and powder blasting technique could be successfully applied to micrornachining of micro patterns and matt treatment of LGP mould.

Rapid Manufacturing of 3D-Shaped Microstructures by UV Laser Ablation (UV 레이저 어블레이션에 의한 3차원 형상 미세 구조물의 쾌속제작)

  • 신보성;양성빈;장원석;김재구;김정민
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.30-36
    • /
    • 2004
  • Recently, the lead-time of a product is to be shortened in order to satisfy consumer's demand. It is thus important to reduce the manufacturing time and the cost of 3D-shaped microstructures. Micro-Electro-Mechanical Systems (MEMS) and devices are usually fabricated by lithography-based methods. Above method is not flexible for the rapid manufacture of 3D-shaped microstructures because it depends on work's experiences and requires excessive cost and time for making many masks. In this paper, the effective laser micrornachining is developed to fabricate UV sensitive polymer microstructures using laser ablation. The proposed process, named by laser microRP, is a very useful method on rapid manufacturing for 3D-shaped microstructures.

An Analysis of Cutting Force in Micromachining (미소절삭에서의 절삭력 해석)

  • Kim, Dong Sik;Kahng, C.H.;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.72-80
    • /
    • 1995
  • Ultraprecision machining technology has been playing a rapidly increasing and important role in manufacturing. However, the physics of the micromachining process at very small depth of cut, which is typically 1 .mu. m or less is not well understool. Shear along the shear plane and friction at the rake face dominate in conventional machining range. But sliding along the flank face of the tool due to the elastic recovery of the workpiece material and the effects of plowing due to the large effective negative rake angle resultant from the tool edge radius may become important in micromachining range. This paper suggests an orthogonal cutting model considering the cutting edge radius and then quantifies the effect of plowing due to the large effective negative rake angle.

  • PDF