• Title/Summary/Keyword: Microporous

Search Result 258, Processing Time 0.022 seconds

Surface modification of polypropylene membrane to improve antifouling characteristics in a submerged membrane-bioreactor: Ar plasma treatment

  • Zhou, Jin;Li, Wei;Gu, Jia-Shan;Yu, Hai-Yin
    • Membrane and Water Treatment
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 2010
  • To improve the antifouling characteristics of polypropylene hollow fiber microporous membranes in a submerged membrane-bioreactor for wastewater treatment, the surface-modification was conducted by Ar plasma treatment. Surface hydrophilicity was assessed by water contact angle measurements. The advancing and receding water contact angles reduced after the surface modification, and hysteresis between the advancing and receding water contact angles was enlarged after Ar plasma treatment due to the increased surface roughness after surface plasma treatment. After continuous operation in a submerged membrane-bioreactor for about 55 h, the flux recovery after water cleaning and the flux ratio after fouling were improved by 20.0 and 143.0%, while the reduction of flux was reduced by 28.6% for the surface modified membrane after 1 min Ar plasma treatment, compared to those of the unmodified membrane. Morphological observations showed that the mean membrane pore size after Ar plasma treatment reduced as a result of the deposition of the etched species; after it was used in the submerged membrane-bioreactor, the further decline of the mean membrane pore size was caused by the deposition of foulants. X-ray photoelectron spectroscopy and infrared spectroscopy confirmed that proteins and polysaccharide-like substances were the main foulants in the precipitate.

Ex-situ Catalytic Pyrolysis of Korean Native Oak Tree over Microporous Zeolites (미세기공 제올라이트를 이용한 국내 수종 굴참나무의 간접 촉매 열분해)

  • Kim, Young-Min;Kim, Beom-Sik;Chea, Kwang-Seok;Jo, Tae Su;Kim, Seungdo;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • Ex-situ catalytic pyrolysis of a Korean native oak tree over microporous zeolites (HZSM-5, HBeta, and HY) was performed by using a fixed bed reactor. The effect of sample to catalyst ratio and reaction temperature was also investigated to optimize production conditions of high quality bio-oil. Among three catalysts, HZSM-5 showed the highest aromatic formation due to its proper pore size and strong acidity. Although HY and HBeta also showed the catalytic activity, they produced larger amounts of coke due to their larger pore size. The smaller ratio of the sample to the catalyst and higher reaction temperature were also required to maximize the yields of aromatic hydrocarbons via the catalytic pyrolysis of oak tree over HZSM-5.

The effect of implant surface treated by anodizing on proliferation of the rat osteoblast (양극화 타이타늄 표면처리가 골모세포 증식에 미치는 영향)

  • Hur, Yin-Shik;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Kim, Hyung-Sun;Cho, Byung-Won;Cho, Won-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.33 no.3
    • /
    • pp.499-518
    • /
    • 2003
  • The surface characteristics of titanium have been shown to have an important role in contact ossseointegration around the implant. Anodizing at high voltage produces microporous structure and increases thickness of surface titanium dioxide layer. The aim of present study was to analyse the response of rat calvarial osteoblast cell to commercially pure titanium and Ti-6A1-4V anodized in 0.06 mol/l ${\beta}$-glycerophosphate and 0.03 mol/l sodium acetate. In this study, rat calvarial osteoblasts were used to assay for cell viability and cell proliferation on the implant surface at 1,2,4,7 days. 1. Surface roughness was 1.256${\mu}m$ at 200V, and 1.745${\mu}m$ at 300V. 2. The thickness of titanium oxide layer was increased 1 ${\mu}m$ with the increase of 50V. 3. The proliferation rate of osteoblastic cells was increased with the increase of the surface roughness and the thickness of titanium oxide layer. 4. There was no difference in cell viability and cell proliferation between commercially pure titanium and Ti-6A1-4V anodized at the same condition. In conclusion, the titanium surface modified by anodizing was biocompatible, produced enhanced osteoblastic response. The reasons of enhanced osteoblast response might be due to reduced metal ion release by thickened and stabilized titanium dioxide layer and microporous rough structures.

Preparation and Characterization of Microporous PVdF Membrane for Li-ion Rechargeable Battery (이차전지용 미세다공성 PVdF 분리막의 제조와 물성)

  • Nam, Sang-Yong;Yu, Dae-Hyun;Jeong, Mi-Ae;Rhim, Ji-Won;Byun, Hong-Sik;Jeong, Chul-Ho;Lee, Young-Moo;Seo, Myung-Su
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.233-243
    • /
    • 2007
  • In this study, a separate. which is a microporous membrane based on poly(vinylidene fluoride)(PVdF) was prepared by phase inversion method. Being prepared by dissolving the PVdF in the N,N'-dimethylformamide(DMF) with mechanical stirring, the homogenous casting solution was cast onto a clean glass plate. Pore size and porosity of the membranes were controlled by changing preparation condition. The highest porosity of the membrane was 78.6%. The mechanical property of the membrane was determined by using an universal testing machine(UTM). The morphology of the membrane was investigated by scanning electron microscopy(SEM). The cross-section of the membrane shows sponge-like small micro-pores.

Effect of Membrane Material and Absorbent Type on $SO_2$ Removal Using Microporous Hollow-fiber Membrane G-L Contactors (다공성 중공사막 기액 접촉기틀 이용한 $SO_2$ 제거에서 막재질과 흡수제의 영향)

  • Song Hee-Ouel;Kim In-Won;Park Hyun-Hee;Lim Chun-Won;Jo Hang-Dae;Lee Hyung-Keun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.14-21
    • /
    • 2006
  • An experimental apparatus for the removal of $SO_2$ gas using microporous hollow-fiber membrane G-L contactors was setup. Various performance experiments were carried out with commercial membrane modules and the membrane modules made by KIER. The $SO_2$ removal efficiency was outstanding. When the hollow-fiber membrane was used for the removal of $SO_2$, the selection of absorbers and additives, membrane material, operating conditions of membrane manufacture were significant variables to develop optimal G-L contactors. More experiment works will be done for the development of compact, cost-effective and better G-L contactors.

  • PDF

Microporous Polystyrene Membranes Produced via Thermally Induced Phase Separation (열적으로 유도된 상 분리에 의해 제조된 폴리스티렌 미세 다공성 막)

  • Song, Seung-Won;Torkelson, John M.
    • Membrane Journal
    • /
    • v.5 no.3
    • /
    • pp.119-128
    • /
    • 1995
  • The effects of coarsening on microstructure formation in polystyrene-cyclohexane solutions and membranes made from them were studied by scanning electron miccoscopy(SEM). Thermal analysis of the polymer solutions was carried out with a differential scanning calorimeter and the binodal curve was determined from the onset temperature of the heat of demixing peak. Using thermally induced phase separation(TIPS) and a freeze drying technique, it was demonstrated that polymer membrane microstructure can be changed significantly by controlling coarsening time and quench route. For systems undergoing phase separation by spinodal decomposition, resulting in a well interconnecmd, microporous structure with nearly uniform pore sizes, it was found that extending the phase separation time prior m freezing and solvent removal can result in a significant increase in pore or cell size which is highly dependent on both quench depth and coarsening time. Also this study has revealed the important role of polymer concentration in dictating the material continuity of the membranes.

  • PDF

Development of Temperature Control Technology of Root Zone using Evaporative Cooling Methods in the Strawberry Hydroponics (증발 냉각방식을 이용한 딸기 수경재배의 배지 온도조절 기술 개발)

  • Kim, Ki-Dong;Ha, Yu-Shin;Lee, Ki-Myung;Park, Dae-Heum;Kwon, Soon-Gu;Park, Jong-Min;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.183-188
    • /
    • 2010
  • It is necessary to develop an efficient and affordable cooling technology and apply the practical system to rural farmhouse, control to adequate growth environment by adjusting temperature of root zone. A study on managing medium temperature of the hydroponics for strawberry cultivation was conducted and feasible evaporative cooling system for the media cooling were as follows: Characteristics of temperature drop were investigated for the evaporative cooling devices using microporous film duct, felt mulching on media surface, and water permeable sheet in culture tank. The evaporative device with water permeable sheet in culture tank was the most efficient and economic on media cooling system.

Electrochemical Behavior of Pt-Ru Catalysts on Zeolite-templated Carbon Supports for Direct Methanol Fuel Cells

  • Lim, Tae-Jin;Lee, Seul-Yi;Yoo, Yoon-Jong;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3576-3582
    • /
    • 2014
  • Zeolite-templated carbons (ZTCs), which have high specific surface area, were prepared by a conventional templating method using microporous zeolite-Y for catalyst supports in direct methanol fuel cells. The ZTCs were synthesized at different temperatures to investigate the characteristics of the surface produced and their electrochemical properties. Thereafter, Pt-Ru was deposited at different carbonization temperatures by a chemical reduction method. The crystalline and structural features were investigated using X-ray diffraction and scanning electron microscopy. The textural properties of the ZTCs were investigated by analyzing $N_2$/77 K adsorption isotherms using the Brunauer-Emmett-Teller equation, while the micro- and meso-pore size distributions were analyzed using the Barrett-Joyner-Halenda and Harvarth-Kawazoe methods, respectively. The surface morphology was characterized using transmission electron microscopy and inductively coupled plasma-mass spectrometry. The electrochemical properties of the Pt-Ru/ZTCs catalysts were also analyzed by cyclic voltammetry measurements. From the results, the ZTCs carbonized at $900^{\circ}C$ show the highest specific surface areas. In addition, ZTC900-PR led to uniform dispersion of Pt-Ru on the ZTCs, which enhanced the electro-catalytic activity of the Pt-Ru catalysts. The particle size of ZTC900-PR catalyst is about 3.4 nm, also peak current density from the CV plot is $12.5mA/cm^2$. Therefore, electro-catalytic activity of the ZTC900-PR catalyst is higher than those of ZTC1000-PR catalyst.

Synthesis and Their Catalytic Performance on Microporous Materials(CHA, ERI and MTT types) (마이크로다공성재료의 합성과 촉매적성능 (CHA, ERI, and MTT types))

  • Kang, Mi-Sook;Park, Jong-Yul;Um, Myeong-Heon
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.117-123
    • /
    • 1999
  • This work was focused on the synthesis and their catalytic performance on microporous materials having various pore types and dimensions in structures, such as the SAPO-34 and the SAPO-44 with CHA type, the SAPO-17 with ERI type of three dimensional structures, and the ZSM-23 with MTT type of one dimensional structure. Synthesized materials exhibited various acidities and the selectivities to olefin in methanol conversion. As a result, the order of their acid strength was as follows; SAPO-44>SAPO-34>SAPO-17>ZSM-5. On the other hand, the CHA type materials, such as SAPO-34 and SAPO-44, had high selectivity to light olefins(ethylene or propylene), and ZSM-23 with MTT typ of one dimensional structure showed high selectivity to paraffins over $\textrm{C}_{5}$~. This result is a proof that the structure in material had strong influence on catalytic performance. In addition, a surprising result is that the catalytic selectivity to ethylene enhanced on Ni-corporated materials compared with the non-corporated.

  • PDF

Preparation and Characterization of Polyamide Thin Film Composite Reverse Osmosis Membranes Using Hydrophilic Treated Microporous Supports (친수성 처리된 다공성 지지체를 이용한 폴리아마이드 박막 역삼투 복합막 제조 및 특성 분석)

  • Son, Seung Hee;Jegal, Jonggeon
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.317-324
    • /
    • 2014
  • It is very well known that the conventional polyamide (PA) thin film composite (TFC) reverse osmosis (RO) membranes have excellent permselective properties, but their chlorine tolerance is not good enough. In this study, to improve such chlorine tolerance, microporous membranes containing hydrophilic functional groups such as -COOH were used as a support to prepare PA TFC RO membranes, employing the conventional interfacial polymerization method. Meta-phenylene diamine (MPD) and 2,6-diamine toluene (2,6-DAT) were used as diamine monomers and tri-mesoyl chloride (TMC) as an acid monomer. The membranes prepared were characterized using various instrumental analytical methods and permeation test set-up. The flux obtained from the membranes prepared so was more than $1.0m^3/m^2day$ at 800 psi of operating pressure, while the salt rejection was over 99.0%. The chlorine tolerance of them was also found to be better than that of the membrane prepared by using conventional polysulfone support without hydrophilic functional groups.