• Title/Summary/Keyword: Micropores

Search Result 194, Processing Time 0.027 seconds

The Effects of Carbon and $Mo_2C$ Content on the Microstructure and Hardness of $TiC-Ni_3Al$ cermet ($TiC-Ni_3Al$ Cermet의 조직과 경도에 미치는 탄소량과 $Mo_2C$ 첨가의 영향)

  • 손호민
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.62-68
    • /
    • 1999
  • The effects of the carbon content ranging from 17.5 to 21.0 wt.% in TiC-30vol.% $Ni_3Al$ cenmet and the $Mo_2C$ content raging from 0 to 30 wt.% in TiC-20 vol.% $Ni_3Al$ cermet were investigated in the relation to the microstures and harbness. The speciment were sintered at 140$0^{\circ}C$, 143$0^{\circ}C$ and 145$0^{\circ}C$ for 60minutes. The results were summarized as follows; 1) The shrinkages and relative densitites of the specimens were incrased up to 20.0 wt.% C and then decreased. 2) The grains of TiC were almost the same size with the different content of carbon. Free carbons were appeared on the microstrures when carbon was added over 20.5 wt.% while TiC and $Ni_3Al$l were formed when carbon was added below 20.0 wt.%; 3) The lattice parameters of the $Ni_3Al$ and TiC phases were increased up to 20.5 wt.% C, and then saturated. 4) The hardess was increased up to 20.0 wt.% C, and then decreased. 5) The $Mo_2C$ made the TiC grains fine and the surrounding structure around TiC gains. 6) The micropores were decreased with increasing the binder and the sintering temperature. 7) The lattice parameter of the $Ni_3Al$l ana TiC were almost the samp up to 10 wt.% $Mo_2C$ and then decreased. 8) The hatdness was increased up to 5wt.% $Mo_2C$ and then decreased owing to the micrpores. 9) The more the binder phase, the higher the relative density and the proper $Mo_2C$ amount of $TiC-Ni_3Al$ cermets were obtained.

  • PDF

SURFACE ANALYSES OF TITANIUM SUBSTRATE MODIFIED BY ANODIZATION AND NANOSCALE Ca-P DEPOSITION

  • Lee, Joung-Min;Kim, Chang-Whe;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.795-804
    • /
    • 2007
  • Statement of problem. Nano-scale calcium-phosphate coating on the anodizing titanium surface using ion beam-assisted deposition (IBAD) has been recently introduced to improve the early osseointegration. However, not much is known about their surface characteristics that have influence on tissue-implant interaction. Purpose. This study was aimed to investigate microtopography, surface roughness, surface composition, and wettability of the titanium surface modified by the anodic oxidation and calcium phosphate coating using IBAD. Material and methods. Commercially pure titanium disks were used as substrates. The experiment was composed of four groups. Group MA surfaces represented machined surface. Group AN was anodized surface. Group CaP/AN was anodic oxidized and calcium phosphate coated surfaces. Group SLA surfaces were sandblasted and acid etched surfaces. The prepared titanium discs were examined as follows. The surface morphology of the discs was examined using SEM. The surface roughness was measured by a confocal laser scanning microscope. Phase components were analyzed using thin-film x-ray diffraction. Wettability analyses were performed by contact angle measurement with distilled water, formamide, bromonaphtalene and surface free energy calculation. Results. (1) The four groups showed specific microtopography respectively. Anodized and calcium phosphate coated specimens showed multiple micropores and tiny homogeneously distributed crystalline particles. (2) The order of surface roughness values were, from the lowest to the highest, machined group, anodized group, anodized and calcium phosphate deposited group, and sandblasted and acid etched group. (3) Anodized and calcium phosphate deposited group was found to have titanium and titanium anatase oxides and exhibited calcium phosphorous crystalline structures. (4) Surface wettability was increased in the order of calcium phosphate deposited group, machined group, anodized group, sandblasted and acid etched group. Conclusion. After ion beam-assisted deposition on anodized titanium, the microporous structure remained on the surface and many small calcium phosphorous crystals were formed on the porous surface. Nanoscale calcium phosphorous deposition induced roughness on the microporous surface but hydrophobicity was increased.

Characterization of Fe-ACF/$TiO_2$ composite Photocatalysts Effect Via Degradation of MB Solution (Fe-ACF/$TiO_2$ 복합체의 특성과 MB용액의 분해에서 포토-펜톤 효과)

  • Zhang, Kan;Meng, Ze-Da;Ko, Weon-Bae;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.290-298
    • /
    • 2009
  • In this paper, the Fe-activated carbon fiber (ACF)/$TiO_2$ composite catalysts were prepared by a sol-gel method. The synthesized photocatalysts were used for the photo degradation of Methylene blue solution under UV light. From Brunauer-Emmett-Teller measurements (BET) data, it was shown the blocking of the micropores on the surface of ACF by treatment of Fe and Ti compound. As shown in SEM images, the ferric compounds and titanium dioxides were fixed onto the ACF surfaces. The result of X-ray powder diffraction showed that the crystal phase contained a mixing anatase and rutile structure and the 'FeO+$TiO_2$' from the composites. The EDX spectra for the elemental analysis showed the presence of C, O, and Ti with Fe peaks. Degradation activity of MB could be attributed to +OH radicals derived from electron/hole pair's reactions due to photolysis of $TiO_2$ and photo-Fenton effect of Fe.

Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution (삼상 계면대에서 활성 탄소섬유로 된 연료전지 전극의 흡착 특성)

  • 박수진;정효진;나창운
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.46-51
    • /
    • 2003
  • In this work, the electrode far fuel cell was fabricated by mixing carbon blacks with activated carbon fibers (ACFs) in order to form the proper three phase distribution, and then the change of electrode in three phase distribution was investigated. Pt loading yield with ACF content and Pt particle size were determined by AAS and XRD measurements, respectively. And the pore structures, including specific surface area ($S_{BET}$), microporosity, and pore size distribution (PSD) for each electrode were systematically investigated by BET volumetric measurement. The morphology of electrode in three phase distribution was determined by SEM. As an experimental result, it was observed that Pt loading yield was not influenced on the content of ACF. While, the electrode in three phase distribution was largely improved in the case of 30% ACF addition on carbon blacks. These results were probably explained by the increase of the portion of micropores, resulting in increasing the active sites of catalyst.

Microstructure of Non-Sintered Inorganic Binder using Phosphogypsum and Waste Lime as Activator

  • Kim, Ji-Hoon;An, Yang-Jin;Mun, Kyung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.305-312
    • /
    • 2018
  • This study is about the development of a non-sintered binder (NSB) which does not require a sintering process by using the industrial by-products Phosphogypsum (PG), Waste Lime (WL) and Granulated Blast Furnace Slag (GBFS). In this report, through SEM analysis of the NSB paste hardening body, micropore analysis of paste using the mercury press-in method and microstructure observation were executed to consider the influence of the formation of the pore structure and the distribution of pore volume on strength, and the following conclusions were reached. 1) Pore structure of NSB paste of early age is influenced by hydrate generation amount by GBFS and activator. 2) Through observing the internal microstructure of NSB binder paste, it was found that the strength expression at early age due to hydration reaction was achieved with a large amount of ettringite serving as the frame with C-S-H gel generated at the same time. It was confirmed that C-S-H gel wrapped around ettringite, and as time passed, the amount generated continually increased, and C-S-H gel tightly filled the pores of hardened paste, forming a dense network-type web structure. 3) For NSB-type cement, the degree of formation of gel pores below $10{\mu}m$ had a greater influence on strength improvement than simple pore reduction by charging capillary pores, and the pore size that had the greatest effect on strength was micropores with diameter below $10{\mu}m$.

Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method (동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가)

  • Kim, Kyeong-Lok;Ok, Kyung-Min;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

Characteristics of The Wastewater Treatment Processes for The Removal of Dyes in Aqueous Solution(2) - Ozonation or ACF Adsorption Treatment of Reactive Dyes - (수용액 중의 염료 제거를 위한 폐수처리공정의 특성(2) - 반응성염료의 오존산화 및 섬유상활성탄 흡착 처리 -)

  • Han, Myung-Ho;Huh, Man-Woo
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.26-36
    • /
    • 2007
  • This study was carried out to treat the aqueous solutions containing reactive dyes(RB19, RR120 and RY179) by the Ozone demand flask method and adsorption process using activated carbon fiber(ACF) which are one of the main pollutants in dye wastewater. Ozone oxidation of three kinds of the reactive dyes was examined to investigate the reactivity of dyes with ozone, competition reaction and ozone utilization on various conditions for single- and multi-solute dye solution. Concentration of dyes was decreased continuously with increasing ozone dosage in the single-solute dye solutions. Competition quotient values were calculated to investigate the preferential oxidation of individual dyes in multi-solute dye solutions. Competition quotients(CQi) and values of the overall utilization efficiency, ${\eta}O_3$, were increased at 40mg/l of ozone dosage in multi-solute dye solutions. ACF(A-15) has much larger specific surface area$(1,584m^2/g-ACF)$ in comparison with granular activated carbon adsorbent (F400, $1,125m^2/g-GAC$), which is commonly used, and most of pores were found to be micropores with pore radius of 2nm and below. It was found that RB19 was most easily adsorbed among the dyes in this study. In the case of PCP (p-chlorophenol) and sucrose, which are single component adsorbate, adsorption capacities of ACF(A-15) were in good agreement with the batch adsorption measurement, and saturation time predicted of ACF columns for these components was also well agreed with practically measured time. But in the case of reactive dyes, which have relatively high molecular weight and aggregated with multi-components, adsorption capacities or saturation time predicted were not agreed with practically measured values.

The influence of the soaking in the manufacturing of positive tubular plates on the performance of lead-acid batteries (튜브식 양극판의 침적공정이 전지 성능에 미치는 영향)

  • Yoon, Youn-Saup;Kim, Byung-Kuan;An, Sang-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.211-218
    • /
    • 2008
  • The performance of positive plates depends on the structure of the lead dioxide active mass. The positive active materials (PAM) consists of a skeleton, built up of agglomerates and macropores. Agglomerates, in their turn, comprise particles and micropores. This paper described a study conducted to determine the effects of different soaking times between the acid fill and formation stages of the tubular plate production. For the positive plates a lead oxide were filled into tubular bag with a red lead. After filling the positive plates were soaked in $H_2SO_4$ solution. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrical testing had been used to study the compositional and morphological aspects of the positive active material(PAM) just prior and after formation. Results indicate that PAM compositions were effected by the soaking time and acid density of $H_2SO_4$ solution. It can be seen that as the soaking time duration increases, $\alpha$-PbO, $Pb_3O_4$, and Pb were all gradually sulphating. Composition of 3BS reached a maximum at around 3 h duration and $H_2SO_4$ of sp. gr. 1.10 on soaking. This results would suggest that the most beneficial conditions for soaking were the $H_2SO_4$ of sp. gr. 1.10 and 2 to 6 h of soaking.

Microstructure and Strength Characteristic of Hydropobic Cement Mortar with Silan Admixture (실란계 혼화제가 혼입된 소수성 시멘트 모르타르의 미세구조 및 강도특성)

  • Kim, Younghwan;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.127-134
    • /
    • 2021
  • A hydrophobic emulsion consisting of PMHS and PVA was mixed into a cement mortar to observe changes in cement hydrate and microstructure, and to experimentally evaluate compressive strength and flexural strength. The hydrophobic emulsion was added with metakaolin and PVA fibers, and the stirring speed and sequence were adjusted to prepare a shell-concept hydrophobic emulsion. It was then mixed when mixing mortar to enhance filling of the internal pores and change of the hydrates. It was observed that the mortar mixed with a hydrophobic emulsion was filled with micropores and a coating film was formed on the surface of the hydrates by the emulsion. It was analyzed that the total pore area and porosity of the mortar mixed with the emulsion decreased from 30% to 60% compared to OPC, excluding the 50MK variable, which was extremely reduced and the median pore diameter decreased in some variables. It was also found that the compressive strength of the mortar mixed with emulsion 1% was increased up to 20%, but the strength of the mortar specimen mixed with 2% decreased to 50%.

Konjac Glucomannan Derived Carbon Aerogels for Multifunctional Applications

  • Lian, Jie;Li, Jiwei;Wang, Liang;Cheng, Ru;Tian, Xiuquan;Li, Xue;Zhou, Jian;Duan, Tao;Zhu, Wenkun
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850113.1-1850113.11
    • /
    • 2018
  • Environmental and energy issues have always been a hot topic of global research. Oil leakage has caused great damage to the environment, affecting a wide area and it is difficult to clean up. In most cases, carbon-based adsorbents are typically utilized to remove oil spills because of their economic benefits and high adsorbent efficiency. At the same time, its excellent material properties can also be used for the preparation of supercapacitors. In this paper, the carbon aerogels were prepared by the one-step method. The prepared materials endowed a 3D network structure with a huge number of micropores and mesoporous, and the material is light-weight, stable, hydrophobic and has affinity for oil (17.02 g/g) to the KGM carbon aerogel. Through the physicchemical characterization, the KGM carbon aerogel shows specific surface area is $689m^2/g$, high water contact angle ($136.64^{\circ}$) and excellent reusability (more than 15 cycle times). In addition, we also discussed the electrochemical properties of the material and obtained the specific electrical capacity of 139 F/g under the condition of 1 A/g.