• Title/Summary/Keyword: Micromechanical test

Search Result 69, Processing Time 0.024 seconds

Squeeze Film Damping of Perforated Planar Microstructures (기판에 수직으로 진동하는 다공 평판 미소구조물의 공기감쇠)

  • Kim, Eung-Sam;Jo, Yeong-Ho;Kim, Mun-Eon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.1
    • /
    • pp.64-69
    • /
    • 2000
  • This paper investigates the equeeze film damping of a perforated planar micromechanical structure that oscillates in the normal direction to the substrate. Special focus has been places on the effect of holes and edges of the perforated planar microstructures on the squeeze film damping of oscillatory motions. Theoretical models and test structures of the squeeze film damping have been developed for the transversely oscillating perforated plates. A set of nine different test structures, having three different sized with three different numbers of perforations, has been fabricated and tested. The experimental Q-factors, measured from the fabricated test structures, are compared with the theoretical values, estimated from finite element analysis. It is found that the finite element analysis overestimates the Q-factors up to 150% of the experimental values. Major discrepancy comes from the inaccuracy of the zero pressure condition, placed by the finite element analysis along the perforated edges.

  • PDF

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

Characterizing Small-scale Mechanical Behaviors of Heat-treated Materials with Nanoindentation Technique (나노압입시험법을 이용한 열처리 소재의 미소 변형 거동 평가)

  • Choi, In-Chul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.33 no.2
    • /
    • pp.72-79
    • /
    • 2020
  • To improve the mechanical properties of most structural materials for industrial applications, the control of microstructure is essential by heat treatment process or plastic deformation process. Since the mechanical behavior of structural materials is significantly influenced by their microstructure, it is inevitably preceded to understand the relationship between microstructure and strengthening mechanisms of materials which can be easily changed by heat treatment. In this regard, the nanoindentation test is useful technique for analyzing the influence of the localized microstructural change on small-scale mechanical behavior of various structural materials. Here, the interesting studies performed on various heat-treated materials are reviewed with focus on micromechanical properties obtained by nanoindentation, which are reported in the available literature.

Nondestructive Damage Sensitivity for Functionalized Carbon Nanotube and Nanofiber/Epoxy Composites Using Electrical Resistance Measurement and Acoustic Emission (전기저항 측정과 음향방출을 이용한 표면 처리된 탄소 나노튜브와 나노 섬유 강화 에폭시 복합재료의 비파괴적 손상 감지능)

  • Kim, Dae-Sik;Park, Joung-Man;Kim, Tae-Wook
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.42-45
    • /
    • 2003
  • Nondestructive damage sensing and mechanical properties for acid-treated carbon nanotube (CNT) and nanofiber (CNF)/epoxy composites were investigated using electro-micromechanical technique and acoustic emission (AE). Carbon black (CB) was used to compare to CNT and CNF. The results were compared to the untreated case. The fracture of carbon fiber was detected by nondestructive acoustic emission (AE) relating to electrical resistivity under double-matrix composites test. Sensing for fiber tension was performed by electro-pullout test under uniform cyclic strain. The sensitivity for fiber damage such as fiber fracture and fiber tension was the highest for CNT/epoxy composites. Reinforcing effect of CNT obtained from apparent modulus measurement was the highest in the same content. For surface treatment case, the damage sensitivity and reinforcing effect were higher than those of the untreated case. The results obtained from sensing fiber damage were correlated with the morphological observation of nano-scale structure using FE-SEM. The information on fiber damage and matrix deformation and reinforcing effect of carbon nanocomposites could be obtained from electrical resistivity measurement as a new concept of nondestructive evaluation.

  • PDF

Design, Fabrication, Static Test and Uncertainty Analysis of a Resonant Microaccelerometer Using Laterally-driven Electrostatic Microactuator (수평구동형 정전 액추에이터를 이용한 금속형 공진가속도계의 설계, 제작, 정적시험 및 오차분석)

  • Seo, Yeong-Ho;Jo, Yeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.3
    • /
    • pp.520-528
    • /
    • 2001
  • This paper investigates a resonant microaccelerometer that measures acceleration using a built-in micromechanical resonator, whose resonant frequency is changed by the acceleration-induced axial force. A set of design equations for the resonant microaccelerometer has been developed, including analytic formulae for resonant frequency, sensitivity, nonlinearity and maximum stress. On this basis, the sizes of the accelerometer are designed for the sensitivity of 10$^3$Hz/g in the detection range of 5g, while satisfying the conditions for the maximum nonlinearity of 5%, the minimum shock endurance of 100g and the size constraints placed by microfabrication process. A set of the resonant accelerometers has been fabricated by the combined use of bulk-micromachining and surface-micromachining techniques. From a static test of the cantilever beam resonant accelerometer, a frequency shift of 860Hz has been measured for the proof-mass deflection of 4.3${\pm}$0.5$\mu\textrm{m}$; thereby resulting in the detection sensitivity of 1.10${\times}$10$^3$Hz/g. Uncertainty analysis of the resonant frequency output has been performed to identify important issues involved in the design, fabrication and testing of the resonant accelerometer.

Experimental study of Kaiser effect under cyclic compression and tension tests

  • Chen, Yulong;Irfan, Muhammad
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.203-209
    • /
    • 2018
  • Reliable estimation of compressive as well as tensile in-situ stresses is critical in the design and analysis of underground structures and openings in rocks. Kaiser effect technique, which uses acoustic emission from rock specimens under cyclic load, is well established for the estimation of in-situ compressive stresses. This paper investigates the Kaiser effect on marble specimens under cyclic uniaxial compressive as well as cyclic uniaxial tensile conditions. The tensile behavior was studied by means of Brazilian tests. Each specimen was tested by applying the load in four loading cycles having magnitudes of 40%, 60%, 80% and 100% of the peak stress. The experimental results confirm the presence of Kaiser effect in marble specimens under both compressive and tensile loading conditions. Kaiser effect was found to be more dominant in the first two loading cycles and started disappearing as the applied stress approached the peak stress, where felicity effect became dominant instead. This behavior was observed to be consistent under both compressive and tensile loading conditions and can be applied for the estimation of in-situ rock stresses as a function of peak rock stress. At a micromechanical level, Kaiser effect is evident when the pre-existing stress is smaller than the crack damage stress and ambiguous when pre-existing stress exceeds the crack damage stress. Upon reaching the crack damage stress, the cracks begin to propagate and coalesce in an unstable manner. Hence acoustic emission observations through Kaiser effect analysis can help to estimate the crack damage stresses reliably thereby improving the efficiency of design parameters.

Effect of brittleness on the micromechanical damage and failure pattern of rock specimens

  • Imani, Mehrdad;Nejati, Hamid Reza;Goshtasbi, Kamran;Nazerigivi, Amin
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.535-547
    • /
    • 2022
  • Failure patterns of rock specimens represent valuable information about the mechanical properties and crack evolution mechanism of rock. Several kinds of research have been conducted regarding the failure mechanism of brittle material, however; the influence of brittleness on the failure mechanism of rock specimens has not been precisely considered. In the present study, experimental and numerical examinations have been made to evaluate the physical and mechanical phenomena associated with rock failure mechanisms through the uniaxial compression test. In the experimental part, Unconfined Compressive Strength (UCS) tests equipped with Acoustic Emission (AE) have been conducted on rock samples with three different brittleness. Then, the numerical models have been calibrated based on experimental test results for further investigation and comparing the micro-cracking process in experimental and numerical models. It can be perceived that the failure mode of specimens with high brittleness is tensile axial splitting, based on the experimental evidence of rock specimens with different brittleness. Also, the crack growth mechanism of the rock specimens with various brittleness using discrete element modeling in the numerical part suggested that the specimens with more brittleness contain more tensile fracture during the loading sequences.

Nondestructive Interfacial Evaluation and fiber fracture Source Location of Single-Fiber/Epoxy Composite using Micromechanical Technique and Acoustic Emission (음향방출과 미세역학적시험법을 이용한 단일섬유강화 에폭시 복합재료의 비파지적 섬유파단 위치표정 및 계면물성 평가)

  • Park, Joung-Man;Kong, Jin-Woo;Kim, Dae-Sik;Yoon, Dong-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.418-428
    • /
    • 2003
  • Fiber fracture is one of the dominant failure phenomena affecting the total mechanical Performance of the composites. Fiber fracture locations were measured through the conventional optical microscope and the nondestructive acoustic emission (AE) technique and then were compared together as a function of the epoxy matrix modulus and the fiber surface treatment by the electrodeposition method (ED). Interfacial shear strength (IFSS) was measured using tensile fragmentation test in combination of AE method. ED treatment of the fiber surface enlarged the number of fiber fracture locations in comparison to the untreated case. The number of fiber fracture events measured by the AE method was less than optically obtained one. However, fiber fracture locations determined by AE detection corresponded with those by optical observation with small errors. The source location of fiber breaks by AE analysis could be a nondestructive, valuable method to measure interfacial shear strength (IFSS) of matrix in non-, semi- and/or transparent polymer composites.

Numerical Modeling of Soil-Cement based on Discrete Element Method (개별요소법을 이용한 시멘트 혼합토의 수치모델링)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2016
  • Discrete Element Method was conducted for rock and coarse-grained materials in development of granular mechanics and related numerical model due to analyze and apply micromechanical property. And it was verified that the analysis to consider bonding effect was insufficient. In this study, to overcome limits of existing method, it was conducted to analyze difference between indoor test result and bonding effect using $PFC^{3D)}$. For indoor test of mixed soil, uniaxial compression tests by curing time and by cement content were performed. And, DEM to suitable for each condition of indoor test was conducted. In the result of this study, in terms of geotechnics, it was verified that DEM can be used for application as numerical laboratory as well as prediction of micro and macro behavior about bonding effect of mixed soil.

Plasticity and Fracture Behaviors of Marine Structural Steel, Part II: Theoretical Backgrounds of Fracture (조선 해양 구조물용 강재의 소성 및 파단 특성 II: 파단의 이론적 배경)

  • Choung, Joon-Mo;Shim, Chun-Sik;Kim, Kyung-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.92-100
    • /
    • 2011
  • The main goal of this paper is to provide the theoretical background for the fracture phenomena in marine structural steels. In this paper, various fracture criteria are theoretically investigated: shear failure criteria with constant failure strain and stress triaxiality-dependent failure strain (piecewise failure and Johnson-Cook criteria), forming limit curve failure criterion, micromechanical porosity failure criterion, and continuum damage mechanics failure criterion. It is obvious that stress triaxiality is a very important index to determine the failure phenomenon for ductile materials. Assuming a piecewise failure strain curve as a function of stress triaxiality, the numerical results coincide well with the test results for smooth and notched specimens, where low and high stress triaxialities are observed. Therefore, it is proved that a failure criterion with reliable material constants presents a plastic deformation process, as well as fracture initiation and evolution.