• Title/Summary/Keyword: Microlensing

Search Result 107, Processing Time 0.021 seconds

WFIRST ULTRA-PRECISE ASTROMETRY II: ASTEROSEISMOLOGY

  • Gould, Andrew;Huber, Daniel;Penny, Matthew;Stello, Dennis
    • Journal of The Korean Astronomical Society
    • /
    • v.48 no.2
    • /
    • pp.93-104
    • /
    • 2015
  • WFIRST microlensing observations will return high-precision parallaxes, σ(π) . 0.3 µas, for the roughly 1 million stars with H < 14 in its 2.8 deg2 field toward the Galactic bulge. Combined with its 40,000 epochs of high precision photometry (∼ 0.7 mmag at Hvega = 14 and ∼ 0.1 mmag at H = 8), this will yield a wealth of asteroseismic data of giant stars, primarily in the Galactic bulge but includindvvvvvg a substantial fraction of disk stars at all Galactocentric radii interior to the Sun. For brighter stars, the astrometric data will yield an external check on the radii derived from the two asteroseismic parameters, the large-frequency separation <∆νnl> and the frequency of maximum oscillation power νmax, while for the fainter ones, it will enable a mass measurement from the single measurable asteroseismic parameter νmax. Simulations based on Kepler data indicate that WFIRST will be capable of detecting oscillations in stars from slightly less luminous than the red clump to the tip of the red giant branch, yielding roughly 1 million detections.

A planetary lensing feature in caustic-crossing high-magnification microlensing events

  • Chung, Sun-Ju;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.109.2-109.2
    • /
    • 2012
  • Current microlensing follow-up observations focus on high-magnification events because of the high efficiency of planet detection. However, central perturbations of high-magnification events caused by a planet can also be produced by a very close or a very wide binary companion, and the two kinds of central perturbations are not generally distinguished without time consuming detailed modeling (a planet-binary degeneracy). Hence, it is important to resolve the planet-binary degeneracy that occurs in high-magnification events. In this paper, we investigate caustic-crossing high-magnification events caused by a planet and a wide binary companion. From this study, we find that because of the different magnification excess patterns inside the central caustics induced by the planet and the binary companion, the light curves of the caustic-crossing planetary-lensing events exhibit a feature that is discriminated from those of the caustic-crossing binary-lensing events, and the feature can be used to immediately distinguish between the planetary and binary companions.

  • PDF

Current status and future plans of KMTNet microlensing experiments

  • Chung, Sun-Ju;Gould, Andrew;Jung, Youn Kil;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Yee, Jennifer C.;Zhu, Wei;Han, Cheongho;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Yongseok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.41.1-41.1
    • /
    • 2018
  • We introduce a current status and future plans of Korea Microlensing Telescope Network (KMTNet) microlensing experiments, which include an observational strategy, pipeline, event-finder, and collaborations with Spitzer. The KMTNet experiments were initiated in 2015. From 2016, KMTNet observes 27 fields including 6 main fields and 21 subfields. In 2017, we have finished the DIA photometry for all 2016 and 2017 data. Thus, it is possible to do a real-time DIA photometry from 2018. The DIA photometric data is used for finding events from the KMTNet event-finder. The KMTNet event-finder has been improved relative to the previous version, which already found 857 events in 4 main fields of 2015. We have applied the improved version to all 2016 data. As a result, we find that 2597 events are found, and out of them, 265 are found in KMTNet-K2C9 overlapping fields. For increasing the detection efficiency of event-finder, we are working on filtering false events out by machine-learning method. In 2018, we plan to measure event detection efficiency of KMTNet by injecting fake events into the pipeline near the image level. Thanks to high-cadence observations, KMTNet found fruitful interesting events including exoplanets and brown dwarfs, which were not found by other groups. Masses of such exoplanets and brown dwarfs are measured from collaborations with Spitzer and other groups. Especially, KMTNet has been closely cooperating with Spitzer from 2015. Thus, KMTNet observes Spitzer fields. As a result, we could measure the microlens parallaxes for many events. Also, the automated KMTNet PySIS pipeline was developed before the 2017 Spitzer season and it played a very important role in selecting the Spitzer target. For the 2018 Spitzer season, we will improve the PySIS pipeline to obtain better photometric results.

  • PDF

General Relativity and Light Bending/Gravitational Lensing (일반상대성이론과 빛의 꺾임/중력렌즈)

  • Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.57.4-57.4
    • /
    • 2015
  • Light bending by gravity was the key prediction of general relativity. Solar eclipse expedition of 1919 provided the observational support for the theory of general relativity. Diverse gravitational lensing, i.e., light bending, phenomena have been speculated and predicted by general relativity and ultimately discovered many years later. Gravitationally lensed quasars, luminous arcs, weak lensing, and microlensing have provided invaluable information about the distribution of matter, especially of dark matter, and the cosmology. Gravitational lensing is one of the most spectacular manifestation of general relativity and will remain as an extremely useful astrophysical tools in the future.

  • PDF

Atmospheric Extinction for Sing1e band astronomical survey

  • Bak, Jih-Yong;Byun, Yong-Ik
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.27-27
    • /
    • 2004
  • There are increasing number of optical sky surveys for time-series observations, aiming to discover either photometric variations(variable stars, microlensing, or transients) or astrometric variations(near-earth objects, trans-neptunian objects). Some surveys, including YSTAR, use a single filter in order to increase the survey efficiency. However, the traditional method of atmospheric extinction and standardization requires the measurement of source color in at least two passbands. (omitted)

  • PDF

외계행성 탐색시스템 데이터베이스

  • Kim, Dong-Jin;Lee, Chung-Uk;Kim, Seung-Ri;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.65.1-65.1
    • /
    • 2010
  • 한국천문연구원은 2009년부터 지구형 외계행성을 검출하기위한 외계행성 탐색시스템(KMTNet: Korea Microlensing Telescope Network) 개발 사업을 수행하고 있다. KMTNet은 칠레, 호주, 남아프리카 공화국에 설치할 광시야 망원경으로 은하 중심부를 24시간 연속관측을 하고 600GB/1일의 관측 자료가 산출된다. 이 발표에서는 KMTNet에 필요한 데이터베이스의 사양을 설명하고 실제 관측 자료를 이용하여 자료 표출 방법 및 최적의 성능을 얻기 위한 실험 결과 등을 제시한다.

  • PDF

Study of Active Galactic Nuclei and Gravitational Wave Sources with Time-series Observation

  • Kim, Joonho;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2021
  • In this presentation, study of the energetic astronomical phenomena, active galactic nucleus (AGN) and gravitational wave (GW) source, with time-series observation will be reported. They emit large amounts of energy and play an important role in the history of the Universe. First, intra-night variability of AGNs is studied using Korea Microlensing Telescope Network (KMTNet). Second topic is photometric reverberation mapping which is applied for 11 AGNs with medium-bands and Lee Sang Gak Telescope. Last, three gravitational wave events were followed-up by various optical telescopes. Each topic will be specifically addressed in the presentation.

  • PDF

Astrometric Detectability of Parallax Effect in Gravitational Microlensing Events (중력렌즈 사건의 측성적 시차효과 검출에 대한 연구)

  • HAN CHEONGHO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • The lens mass determined from the photometrically obtained Einstein time scale suffers from large uncertainty due to the lens parameter degeneracy. The uncertainty can be substantially reduced if the mass is determined from the lens proper motion obtained from astrometric measurements of the source image centroid shifts, ${\delta}{\theta}_c$, by using high precision interferometers from space-based platform such as the Space Interferometry Mission (SIM), and ground-based interferometers soon available on several 8-10m class telescopes. However, for the complete resolution of the lens parameter degeneracy it is required to determine the lens parallax by measuring the parallax-induced deviations in the centroid shifts trajectory, ${\Delta}{\delta}{\theta}_c$ aloe. In this paper, we investigate the detectabilities of ${\delta}{\theta}_c$ and ${\Delta}{\delta}{\theta}_c$ by determining the distributions of the maximum centroid shifts, $f({\delta}{\theta}_{c,max})$, and the average maximum deviations, $(<{\Delta}{\delta}_{c,max}>)$, for different types of Galactic microlensing events caused by various masses. From this investigation, we find that as long as source stars are bright enough for astrometric observations it is expected that $f({\delta}{\theta}_c)$ for most events caused by lenses with masses greater than 0.1 $M_\bigodot$ regardless of the event types can be easily detected from observations by using not only the SIM (with a detection threshold but also the ${\delta}{\theta}_{th}\;\~3{\mu}as)$ but also the ground-based interferometers $(with\;{\delta}{\theta}_{th}\;\~3{\mu}as)$. However, from ground-based observations, it will be difficult to detect ${\Delta}{\delta}{\theta}_c$ for most Galactic bulge self-lensing events, and the detection will be restricted only for small fractions of disk-bulge and halo-LMC events for which the deviations are relatively large. From observations by using the SIM, on the other hand, detecting ${\Delta}{\delta}{\theta}_c$ will be possible for majority of disk and halo events and for a substantial fraction of bulge self-lensing events. For the complete resolution of the lens parameter degeneracy, therefore, SIM observations will be essential.

  • PDF

KMTNET: A NETWORK OF 1.6 M WIDE-FIELD OPTICAL TELESCOPES INSTALLED AT THREE SOUTHERN OBSERVATORIES

  • KIM, SEUNG-LEE;LEE, CHUNG-UK;PARK, BYEONG-GON;KIM, DONG-JIN;CHA, SANG-MOK;LEE, YONGSEOK;HAN, CHEONGHO;CHUN, MOO-YOUNG;YUK, INSOO
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • The Korea Microlensing Telescope Network (KMTNet) is a wide-field photometric system installed by the Korea Astronomy and Space Science Institute (KASI). Here, we present the overall technical specifications of the KMTNet observation system, test observation results, data transfer and image processing procedure, and finally, the KMTNet science programs. The system consists of three 1.6 m wide-field optical telescopes equipped with mosaic CCD cameras of 18k by 18k pixels. Each telescope provides a 2.0 by 2.0 square degree field of view. We have finished installing all three telescopes and cameras sequentially at the Cerro-Tololo Inter-American Observatory (CTIO) in Chile, the South African Astronomical Observatory (SAAO) in South Africa, and the Siding Spring Observatory (SSO) in Australia. This network of telescopes, which is spread over three different continents at a similar latitude of about -30 degrees, enables 24-hour continuous monitoring of targets observable in the Southern Hemisphere. The test observations showed good image quality that meets the seeing requirement of less than 1.0 arcsec in I-band. All of the observation data are transferred to the KMTNet data center at KASI via the international network communication and are processed with the KMTNet data pipeline. The primary scientific goal of the KMTNet is to discover numerous extrasolar planets toward the Galactic bulge by using the gravitational microlensing technique, especially earth-mass planets in the habitable zone. During the non-bulge season, the system is used for wide-field photometric survey science on supernovae, asteroids, and external galaxies.