• Title/Summary/Keyword: Microlenses

Search Result 38, Processing Time 0.03 seconds

Micro-molding of microlens array using electroformed mold insert

  • LEE NAMSUK;MOON SU-DONG;KANG SHINILL
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.04a
    • /
    • pp.15-19
    • /
    • 2003
  • Polymeric micro lens arrays with diameters of $13\~96\;{\mu}m$ fabricated using the micro-compression molding with electro formed mold inserts. In the present study, the electro forming process was used to make the metallic micro-mold insert for micro-molding of microlens array. The wettability property of the fabricated mold insert was examined by measuring the contact angle of the polymer melt on the mold insert. Microlenses were compression-molded with the fabricated mold insert. The effects of the molding temperature and wettability property on the replication quality of the molded lenses were analyzed experimentally.

  • PDF

Fabrication of Microlens Integrated Silicon Structure for Optical Interconnects (광연결을 위한 마이크로 렌즈가 집적된 실리콘 구조 제작)

  • Min, Eun-Gyeong;Song, Yeong-Min;Lee, Yong-Tak;Yu, Jae-Su
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.491-492
    • /
    • 2009
  • We have fabricated a microlens integrated silicon (Si) structure for optical interconnects. To form microlenses, the Si wafer was wet-etched with $SiN_x$ mask in a HF:$HNO_3:C_2H_4O_2$ solution and then the holes were filled with a AZ9260 photoresist. The focal length of microlens increased in proportional to its radius of curvature (ROC). For the ROC of $100-161{\mu}m$, the focal lengths were obtained approximately between $160{\mu}m$ and $310{\mu}m$, in an agreement with the simulated values using a ray tracing method.

  • PDF

Minimization of Weld Lines in Two Shot Molded Parts with Microlenses (미소 렌즈가 내재화된 이중사출 성형제품의 웰드라인 최소화)

  • 신주경;민병권;김영주;강신일
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • A new design based on the appropriate geometry of molded part and type of runner system under the optimal processing conditions was proposed to minimize the micro weld lines on the sub deco surface molded by two shot molding. Theoretical and experimental studies were conducted to examine the cause of the weld lines during the overmolding process in two shot molding. Various dimensions and geometries of substrate$(1^{st}shot)$ and the wall thickness of overmold$(2^{nd}shot)$ have been proposed to avoid the weld lines which are the most inevitable appearance defects occurred on the sub deco. The each design proposal was analyzed by mold flow analysis after part modeling. The analysis results were compared with molded part from mass production tool. It could be seen that from the analysis that the proper geometry of plastic part and type of runner system considering pressure drop under the optimal processing conditions were the most influential factors to avoid weld lines occured on the sub deco.

Fabrication of Microlenses by X-ray Lithography (X-선 사진식각공정을 이용한 마이크로렌즈의 제작)

  • Jung, S.W.;Park, K.B.;Kim, K.N.;Lee, B.N.;Kim, I.H.;Moon, H.C.;Park, H.D.;Hong, S.J.;Park, S.S.;Shin, S.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1164-1166
    • /
    • 1999
  • 본 연구에서는 3차원 회전체 구조물을 제조하기 위해 회전노광장치를 설계하여 제작하고 마이크로렌즈 제작용 X-선 마스크와 PMMA 기판을 정밀하게 회전시켜 노광함으로써 3차원의 마이크로렌즈를 제작하였다. 제작된 마이크로렌즈의 크기는 직경이 $50{\sim}700{\mu}m$이었고, 또한 이러한 방법으로 원통형 렌즈, 계란형 렌즈 등을 제작함으로써 X-선 사진식각공정으로 정밀도가 높은 다양한 3차원의 회전체 구조물을 제조하는 방법을 제시하였다.

  • PDF

Research for fabricating micro-size PMMA beads using Electro-hydrodynamic process (Electro-hydrodynamic 프로세스를 이용한 PMMA 마이크로 비드 제조방법에 대한 연구)

  • Park, Jong-Ha;Lee, Jun-Hee;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1509-1514
    • /
    • 2008
  • To fabricate microsized poly(methyl methacrylate)(PMMA) beads of uniform size and density on poly(ethylene terephthalate) (PET) fis, we introduce an electro spraying technique that uses a target electrode applied with an ac electric fid. Using the apparatus and various material properties, we could obtain uniform size PMMA beads which were deposited on the thin PET film. The optical properties, transmittance and light diffusivity of the fis electro sprayed with the PMMA were characterized. The results show that the sprayed beads appear to act as a good optical diffuser, like microlenses. To understand the effect of process variables, applied field conditions and rheological properties, the morphological pictures of the deposited particles were investigated through the optical and scanning electron microscope.

  • PDF

Fabrication of micro lens array using micro-compression molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Moon, Su-Dong;Kang, Shin-Il;Yee, Young-Joo;Bu, Jong-Uk
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.743-746
    • /
    • 2000
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were $125{\mu}m$ and over 3.0, respectively.

  • PDF

Microlens Fabrication by Using Excimer Laser (엑사이머 레이저를 이용한 마이크로렌즈 제작)

  • 김철세;김재도;윤경구
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.33-39
    • /
    • 2003
  • A new microlens fabrication technique, the excimer laser lithography is developed. This bases on the pulsed laser irradiation and the transfer of a chromium-on-quartz reticle on to the polymer surface with a proper projection optics system. An excimer laser lithography system with 1/4 and 1/20 demagnification ratios was constructed first, and the photoablation characteristics of the PMMA and Polyimide were experimentally examined using this system. For two different shapes of microlenses, a spherical lens and a cylindrical lens, fabrication techniques were investigated. One for the spherical lens is a combination of the mask pattern projection and fraction effect. The other for the cylindrical lens is a combination of the mask pattern projection and the relative movement of a specimen. The result shows that various shapes of micro optical components can be easily fabricated by the excimer laser lithography.

Fabrication of Micro Lens Array Using Micro-Compression Molding (미세압축성형을 통한 플라스틱 미세렌즈의 성형)

  • Gang, Sin-Il;Mun, Su-Dong;Lee, Yeong-Ju;Bu, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1242-1245
    • /
    • 2001
  • Plastic microlenses play an important role in reducing the size, weight, and the cost of the systems in the fields of optical data storage and optical communication. In the present study, plastic microlens arrays were fabricated using micro-compression molding process. The design and fabrication procedures for mold insert were simplified by using silicon instead of metal. A simple but effective micro compression molding process, which uses polymer powder, were developed for microlens fabrication. The governing process parameters were temperature and pressure histories and the micromolding process was controlled such that the various defects developing during molding process were minimized. The radius and magnification ratio of the fabricated microlens were 125$\mu\textrm{m}$ and over 3.0, respectively.

A Highly Efficient Method of Light Coupling into Optical Fiber with a Tapered Microlens (Tapered Lens를 사용한 Light Source와 Optical Fiber의 고효율 Coupling)

  • 이상호;강민호
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.22-26
    • /
    • 1979
  • Microlenses with an extremely small radius of curvature are efficiently use d to couple LED/laser diode light into optica1 fiber. We propose a Tapered lens for the highly efficient coupling of the optical fiber communication light souses into the fiber. Ray optical analysis shows that the maximum coupling efficiency is as high as 90 %, Tapered lens with optimum parameters are fabricated by using heating and pulling technique. Experiment shows that this new technique improves the coupling efficiency by two and four times for LED and laser diode, respectively, as compared with the simple flat - end coupling.

  • PDF

Simulation study on the optical structures for improving the outcoupling efficiency of organic light-emitting diodes

  • Jeong, Su Seong;Ko, Jae-Hyeon
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.139-143
    • /
    • 2012
  • In this study, optical simulation was used to compare three optical structures that could be applied to the typical organic light-emitting diode to increase the outcoupling efficiency. These were spherical scattering particles (treated as Mie scatterers) embedded in the glass substrate, microlenses formed on the glass substrate, and a diffusing layer (DL) with a Gaussian scattering distribution function inserted between the indium tin oxide (ITO) and the glass substrate. It was found that the application of microlens array and that of scattering particles in the glass substrate exhibited similar enhancements in the outcoupling efficiency when the density and the refractive index of the scattering particles were optimized. The DL located at the interface between the glass and the ITO further enhanced the efficiency because it could further extract the trapped light in the waveguide mode. The appropriate combination of these three structures increased the outcoupling efficiency to about 42%, which is much greater than the typical values of 15-20% when there is no optical structure for light extraction.