• 제목/요약/키워드: Microjet

검색결과 17건 처리시간 0.024초

Experimental Investigation of Supersonic Jet Noise Reduction Using Microjet Injection

  • Mamada, Ayumi;Watanabe, Toshinori;Uzawa, Seiji;Himeno, Takehiro;Oishi, Tsutomu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.622-627
    • /
    • 2008
  • Experiment of active noise control on supersonic jet noise was conducted by use of microjet injection. The microjets were injected to the shear layer of the main jet through 22 small holes at the lip of a rectangular nozzle. Based on the measurement of farfield sound pressure, it was found that the jet noise was effectively reduced by several dB(in some cases up to 10 dB). The power levels of all measurement points were also reduced by use of microjet injection. The microjet affected not only the broadband noise but also the screech tone noise. The sound pressure level, the frequency of the screech tone, and the structure of the jet could be changed by the microjet. Flow visualization with schlieren technique was also made to observe the effect of microjet on the flow field.

  • PDF

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

Painless Microjet Injector Using Laser Pulse Energy (레이저 펄스 에너지를 이용한 무통증 마이크로젯 약물전달시스템)

  • Yoh, Jai-Ick;Han, Tae-Hee;Hah, Jung-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제35권5호
    • /
    • pp.547-550
    • /
    • 2011
  • We have developed a laser-based needle-free liquid drug-injection device. A laser beam is focused inside the liquid contained in the rubber chamber of a micro-scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is less than 100 ${\mu}m$, and we verify that the injected microjet is fast enough to penetrate soft human tissue. In the experiment, the microjet penetrated a 5% gelatin-water solution that replicates the human thrombus and pork-fat tissue.

Laser Induced Microjet Drug Delivery System: Drug Permeation Depending on Laser Wavelength and Pulse Duration (레이저 유도 마이크로젯을 활용한 약물 전달 방식: 레이저 파장 및 펄스길이에 따른 약물 침투 분석)

  • Jang, Hun jae;Ham, Hwi chan;Yoh, Jai ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제41권7호
    • /
    • pp.463-468
    • /
    • 2017
  • For transdermal drug delivery, needless injection system is composed of laser and microjet injector. Main mechanism of microjet injector is the laser-induced bubble. Nd:YAG and Er:YAG laser are used as a power source. Laser parameters such as pulse duration and wavelength are considered, which are core parameters to control the bubble motion. The Nd:YAG laser, pulse duration is short than bubble life time making cavitation like bubble while in Er:YAG laser, long pulse duration and high absorption in water drive bubble as a boiling bubble. Detailed motion of bubble and microjet is captured by the high speed camera. So it is observed that microjet characteristics are determined by the bubble behavior. The performance of drug delivery system is evaluated by fluorescent staining of guinea pig skin.

A Fundamental Study of the Supersonic Microjet Flow (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • 정미선;김현섭;김희동;박종호
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • 제6권1호
    • /
    • pp.63-70
    • /
    • 2002
  • Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed between 0.2 and 1.25 to obtain both the under- and over-expanded flows at the exit of the micronozzle. and Reynolds number Re is changed between 600 to 40000. For both laminar and turbulent microjet flows, sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

Development of a painless injector using high speed laser propulsion and its spin-off to medical industry (고속레이저추진원리를 활용한 무통증 주사기의 개발 및 의료산업으로의 Spin-off)

  • Han, Tae-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.326-330
    • /
    • 2010
  • A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 ${\mu}m$ and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  • PDF

A MAGNETOHYDRODYNAMIC MODEL FOCUSED ON THE CONFIGURATION OF MAGNETIC FIELD RESPONSIBLE FOR A SOLAR PENUMBRAL MICROJET

  • Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • 제35권2호
    • /
    • pp.49.2-49.2
    • /
    • 2010
  • In order to understand the configuration of magnetic field producing a solar penumbral microjet that was recently discovered by Hinode, we performed a magnetohydrodynamic simulation reproducing a dynamic process of how that configuration is formed in a modeled solar penumbral region. A horizontal magnetic flux tube representing a penumbral filament is placed in a stratified atmosphere containing the background magnetic field that is directed in a relatively vertical direction. Between the flux tube and the background field there forms the intermediate region in which the magnetic field has a transitional configuration, and the simulation shows that in the intermediate region magnetic reconnection occurs to produce a clear jet- like structure as suggested by observations. The result that a continuous distribution of magnetic field in three-dimensional space gives birth to the intermediate region producing a jet presents a new view about the mechanism of a penumbral microjet, compared to a simplistic view that two field lines, one of which represents a penumbral filament and the other the background field, interact together to produce a jet. We also discuss the role of the intermediate region in protecting the structure of a penumbral filament subject to microjets.

  • PDF

Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet (노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감)

  • 김진화;유정열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

Numerical Visualization of Supersonic Microjet Flows (초음속 마이크로제트 유동의 수치해석적 가시화)

  • Shin, Choon-Sik;Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • 제7권2호
    • /
    • pp.35-41
    • /
    • 2010
  • Supersonic microjets acquire considerable research interest from a fundamental fluid dynamics perspective, in part because the combination of highly compressible flow at low-to-moderate Reynolds number is not very common, and in part due to the complex nature of the flow itself. In addition, microjets have a great variety engineering applications such as micro-propulsion, MEMS(Micro-Electro Mechanical Systems) components, microjet actuators and fine particle deposition and removal. Numerical simulations have been carried out at moderate nozzle pressure ratios and for different nozzle exit diameters to investigate and to understand in-depth of aerodynamic characteristics of supersonic microjets.