• Title/Summary/Keyword: Microfissure

Search Result 2, Processing Time 0.015 seconds

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

Corrosion Fatigue Cracking Propagation Characteristics and its Protection for the AL-Alloys of Shipbuilding (선박용 알루미늄 합금재의 부식피로균열 진전특성과 그 억제에 관한 연구)

  • Lim, Uh-Joh;Kim, Soo-Byung;Lee, Jin-Yel
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.25 no.2
    • /
    • pp.87-104
    • /
    • 1989
  • Recently, with the tendency of more lightening, high-strength and high-speed in the marine industries such as marine structures, ships and chemical plants, the use of the aluminium Alloy is rapidly enlarge and there occurs much interest in the study of corrosion fatigue crack characteristics. In this paper, the initiation of surface crack and the propagation characteristics on the base metal and weld zone of 5086-H116 Aluminium Alloy Plate which is one of the Al-Mg serious alloy(A5000serious) used most when building the special vessels, were investigated by the plane bending corrosion fatigue under the environments of marine, air and applying cathodic protection. The effects of various specific resistances on the initiation, propagation behavior of corrosion fatigue crack and corrosion fatigue life in the base metal and heat affected zone were examined and its corrosion sensitivity was quantitatively obtained. The effects of corrosion on the crack depth in relation to the uniform surface crack length were also investigated. Also, the structural, mechanical and electro-chemical characteristics of the metal at the weld zone were inspected to verify the reasons of crack propagation behavior in the corrosion fatigue fracture. In addition, the effect of cathodic protection in the fracture surface of weld zone was examined fractographically by Scanning Electron Microscope(S.E.M.). The main results obtained are as follows; (1) The initial corrosion fatigue crack sensitibity under specific resistance of 25Ω.cm% show 2.22 in the base metal and 19.6 in the HEZ, and the sensitivity decreases as specific resistance increases (2) By removing reinforcement of weldment, the initiation and propagation of corrosion crack in the HAZ are delayed, and corrosion fatigue life increases. (3) As specific resistance decreases, the sensitivity difference of corrosion fatigue life in the base metal and HAZ is more susceptible than that of intial corrosion fatigue crack. (4) Experimental constant, m(Paris' rule) in the marine environment is in the range of about 3.69 to 4.26, and as specific resistance increases, thje magnitude of experimental constant, also increases and the effect by corrosion decreases. (5) Comparing surface crack length with crack depth, the crack depth toward the thickness of specimen in air is more deeply propagated than that in corrosion environment. (6) The propagation particulars of corrosion fatigue crack for HAZ under initial stress intensity factor range of $\Delta$k sub(li) =27.2kgf.mm super(-3/2) and stress ratio of R=0 shows the retardative phenomenon of crack propagation by the plastic deformation at crack tip. (7) Number of stress cycles to corrosion fatigue crack initiation of the base metal and the welding heat affected zone are delayed by the cathodic protection under the natural sea water. The cathodic protection effect for corrosion fatigue crack initiation is eminent when the protection potential is -1100 mV(SCE). (8) When the protection potential E=-1100 mV(SCE), the corrosion fatigue crack propagation of welding heat affected zone is more rapid than that of the case without protection, because of the microfissure caused by welding heat cycle.

  • PDF