• Title/Summary/Keyword: Microextraction

Search Result 231, Processing Time 0.017 seconds

The Global Volatile Signature of Veal via Solid-phase Microextraction and Gas Chromatography-mass Spectrometry

  • Wei, Jinmei;Wan, Kun;Luo, Yuzhu;Zhang, Li
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.700-708
    • /
    • 2014
  • The volatile composition of veal has yet to be reported and is one of the important factors determining meat character and quality. To identify the most important aroma compounds in veal from Holstein bull calves fed one of three diets, samples were subjected to solid-phase microextraction (SPME) combined with gas chromatography-quadrupole mass spectrometry (GC-MS). Most of the important odorants were aldehydes and alcohols. For group A (veal calves fed entirely on milk for 90 d before slaughter), the most abundant compound class was the aldehydes (52.231%), while that was alcohols (26.260%) in group C (veal calves fed starter diet for at least 60 d before slaughter). In both classes the absolute percentages of the volatile compounds in veal were different indicating that the veal diet significantly (p<0.05) affected headspace volatile composition in veal as determined by principal component analysis (PCA). Twenty three volatile compounds showed significance by using a partial least-squared discriminate analysis (PLS-DA) (VIP>1). The establishment of the global volatile signature of veal may be a useful tool to define the beef diet that improves the organoleptic characteristics of the meat and consequently impacts both its taste and economic value.

Analysis of Haloacetonitriles in Drinking Water Using Headspace-SPME Technique with GC-MS (Handspace Solid Phase Microextraction 방법에 의한 HANs 분석에 관한 연구)

  • Cho, Deok-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.628-637
    • /
    • 2004
  • In many drinking water treatment plants, chlorination process is one of the main techniques used for the disinfection of water. This disinfecting treatment leads to the formation of disinfection by-products (DBPs) such as haloacetonitriles (HANs), trihalomethanes (THMs), haloacetic acids (HAAs). In this study, headspace-solid phase microextraction (HS- SPME) technique was applied for the analysis of HANs in drinking water. The effects of experimental parameters such as selection of SPME fiber, the addition of salts, magnetic stirring, extraction temperature, extraction time and desorption time on the analysis were investigated. Analytical parameters such as linearity, repeatability and detection limits were also evaluated. The $50/30{\mu}m$-divinylbenzene/carboxen/polydimethylsiloxane fiber, extraction time of 30 minutes, extraction temperature of $20^{\circ}C$ and desorption time of 1 minute at $260^{\circ}C$ were the optimal experimental conditions for the analysis of HANs. The correlation coefficients ($r^2$) for HANs was 0.9979~0.9991, respectively. The relative standard deviations (%RSD) for HANs was 2.3~7.6%, respectively. Detection limits (LDs) for HANs was $0.01{\sim}0.5{\mu}g/L$, respectively.

Comparative Analyses of the Flavors from Hallabong (Citrus sphaerocarpa) with Lemon, Orange and Grapefruit by SPTE and HS-SPME Combined with GC-MS

  • Yoo, Zoo-Won;Kim, Nam-Sun;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.2
    • /
    • pp.271-279
    • /
    • 2004
  • The aroma component of Hallabong peel has been characterized by GC-MS with two different extraction techniques: solid-phase trapping solvent extraction (SPTE) and headspace solid-phase microextraction (HSSPME). Aroma components emitted from Hallabong peel were compared with those of other citrus varieties: lemon, orange and grapefruit by SPTE and GC-MS. d-Limonene (96.98%) in Hallabong was the main component, and relatively higher peaks of cis- ${\beta}$-ocimene, valencene and -farnesene were observed. Other volatile aromas, such as sabinene, isothujol and ${\delta}$-elemene were observed as small peaks. Also, principal components analysis was employed to distinguish citrus aromas based on their chromatographic data. For HSSPME, the fiber efficiency was evaluated by comparing the partition coefficient ($K_{gs}$Kgs) between the HS gaseous phase and HS-SPME fiber coating, and the relative concentration factors (CF) of the five characteristic compounds of the four citrus varieties. 50/30 ${\mu}$m DVB/CAR/PDMS fiber was verified as the best choice among the four fibers evaluated for all the samples.

Evaluation of Volatile Compounds Isolated from Pork Loin (Longissimus dorsi) as Affected by Fiber Type of Solid-phase Microextraction (SPME), Preheating and Storage Time

  • Park, Sung-Yong;Yoon, Young-Mo;Schilling, M. Wes;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.579-589
    • /
    • 2009
  • This study was conducted to investigate the effects of heating, fiber type used in solid-phase microextraction (SPME, two phase vs three phase) and storage time on the volatile compounds of porcine M. longissimus dorsi (LD). Volatile compounds were measured using a gas chromatography and mass spectrometry (GC/MS) with a quadrupole mass analyzer. Among the volatile compounds identified, aldehydes (49.33%), alcohols (24.63%) and ketones (9.85%) were higher in pre-heated loins ($100^{\circ}C$/30 min), whereas, alcohols (34.33%), hydrocarbons (22.84%) and ketones (16.88%) were higher in non-heated loins. Heating of loins induced the formation of various volatile compounds such as aldehydes (hexanal) and alcohols. The total contents of hydrocarbons, alcohols, and carboxylic acids were higher in two phase fibers, whereas those of esters tended to be higher in three-phase fibers (p<0.05). Most volatile compounds increased (p<0.05) with increased storage time. Thus, the analysis of volatile compounds were affected by the fiber type, while heating and refrigerated storage of pork M. longissimus dorsi increased the volatile compounds derived from lipid oxidation and amino acid catabolism, respectively.

Optimization of Headspace Sampling Using Solid Phase Microextraction For Volatile Organic Acids in Different Tobacco Types

  • Lee, Jang-Mi;Lee, Jeong-Min;Son, Seong-Ae;Kwon, Young-Ju;Jang, Gi-Chui;Kim, Young-Ho
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.35 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • A Solid-phase micro extraction(SPME) was evaluated as a tool for headspace sampling of tobacco samples. Several experimental parameters (sampling temperature, pH, and type of SPME fibers) were optimized to improve sampling efficiency in two aspects ; maximum adsorption and selective adsorption of volatile organic acids onto SPME fibers. Among four types of SPME fibers such as PDMS(Polydimethylsiloxane), PA(Polyacrylate), Car/PDMS (Carboxen/Polydimethylsiioxane) and PDMS/DVB(Polydimethylsiioxane/Divinylbenzene) which were investigated to determine the selectivity and adsorption efficiency. A variety of tobacco samples such as flue cured, burley and oriental were used in this study. The effect of these parameters was often dominated by the physical and chemical nature (volatility, polarity) of target compounds. This method allowed us to make important improvements in selectivity and sensitivity. The Car/PDMS fiber was shown to be the most efficient at extracting the 10 selected volatile organic acids. The parameters were optimized: $80^{\circ}C$ adsorption temperature, 30 min of adsorption time, $240^{\circ}C$ desorption temperature, 1 min of adsorption time.

Determination of volatile compounds by headspace-solid phase microextraction - gas chromatography / mass spectrometry: Quality evaluation of Fuji apple

  • Lee, Yun-Yeol;Jeong, Moon-Cheol;Jang, Hae Won
    • Analytical Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2017
  • The volatile components in 'Fuji' apple were effectively determined by a headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 48 volatile components were identified and tentatively characterized based on National Institute of Standards and Technology (NIST) MS spectra library and the Kovats GC retention index I (RI). The harvested Fuji apples were divided into two groups: 1-methylcyclopropene (1-MCP) treated and non-treated (control) samples for finding important indicators between two groups. The major volatile components of both apples were 2-methylbutyl acetate, hexyl acetate, butyl 2-methylbutanoate, hexyl butanoate, hexyl 2-methylbutanoate, hexyl hexanoate and farnesene. No significant differences of these major compounds between 1-MCP treated and non-treated apples were observed during 1 month storage. Interestingly, the amount of off-flavors, including 1-butanol and butyl butanoate, in 1-MCP treated apples decreased over 5 months, and then increased after 7 months. However, non-treated apples did not show significant changes for off-flavors during 7 month storage (p<0.05). The non-treated apples also contained the higher levels of two off-flavors than 1-MCP treated apples. These two compounds, 1-butanol and butyl butanoate, can be used as quality indicators for the quality evaluation of Fuji apple.

Determination of Volatile Organic Compounds (VOCs) in Drinking Water using Solid Phase Microextraction (SPME) (SPME를 이용한 수용액중의 휘발성 유기화합물 분석)

  • Park, Gyo-Beom;Lee, Sueg-Geun
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.277-281
    • /
    • 2000
  • The solid phase microextrction (SPME) fiber which contains $100{\mu}m$ polydimethyl siloxane of a stationary phase was used for the analysis of volatile organic compounds contained in aqueous solution. sixteen volatile organic compounds, which were spiked in blank water and extracted by the headspace SPME techique, were analyzed by gas chromatography/mass spectrometry (GC/MS). Analytical results showed that the percent of average recoveries and relative standard deviations were 97% and 4.7%, respectively. The value of detection limit was ranged from 0.01 to $0.5{\mu}g/l$. These results are more accurate than those obtained by the other methods such as purge and trap and headspace methods.

  • PDF

Changes in Volatile Flavor Compounds in Red Snow Crab Chionoecetes japonicus Cooker Effluent during Concentration (붉은 대게 가공부산물 농축중의 휘발성 향기성분 변화)

  • Ahn, Jun-Suck;Cho, Woo-Jin;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.437-440
    • /
    • 2006
  • To develop natural crab-like flavorants from red snow crab Chionoecetes japonicus cooker effluent (RSCCE), the flavor was analyzed during the concentration of RSCCE up to $40^{\circ}Brix$. Using solid phase microextraction (SPME)/gas chromatography (GC)/mass selective detection (MSD), 30 volatile flavor compounds were detected in four RSCCE samples (10, 20, 30, and $40^{\circ}Brix$). These comprised 12 aromatic compounds, 5 N-containing compounds, 2 5-containing compounds, 2 alcohols, 2 aldehydes, and 7 miscellaneous compounds. The amounts of all volatiles except alcohols and aldehydes increased significantly with the concentration (p<0.05). Of the volatiles detected, the most abundant was a dimethyl trisulfide with an odor like onion/cooked cabbage. Of the N-containing compounds (nutty, roasted peanut-like odor), 2-ethyl-5-methylpyrazine was the most abundant, followed by 2,5-dimethylpyrazine and 2-methyl-5-isopropylpyrazine in that order (p<0.05). The N- and S-containing compounds with characteristic odors detected in this experiment are thought to play a positive role in RSCCE during concentration.

Comparison of Volatile Flavor Compounds in Meat of the Blue Crab Using V-SDE and SPME Methods (V-SDE와 SPME법에 의한 꽃게(Portunus trituberculatus)육의 휘발성 향기성분 비교)

  • Cha, Yong-Jun;Cho, Woo-Jin;Jeong, Eun-Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.6
    • /
    • pp.441-446
    • /
    • 2006
  • Volatile flavor compounds in meat of the blue crab Portunus trituberculatus were compared using vacuum simultaneous steam distillation-solvent extraction (V-SDE) and solid phase microextraction (SPME)/ gas chromatography (GC)/ mass selective detection (MSD) methods. A total of 100 volatile flavor compounds were identified by both methods: 77 by V-SDE and 59 by SPME. These compounds were composed of 17 aldehydes, 12 ketones, 19 alcohols, 5 esters, 4 sulfur-containing compounds, 6 nitrogen-containing compounds, 23 aromatic compounds, 6 hydrocarbons, 2 terpenes, and 6 miscellaneous compounds. Although more compounds were detected using V-SDE than using SPME, the levels of all groups detected, except esters, were higher using SPME than using V-SDE. In addition to trimethylamine, aldehydes, and aromatic compounds, the S- and N-containing compounds with low thresholds are thought to have positive roles for flavors in the meat of the blue crab.

Preparation of Optimal Condition for Residual Pesticides Analysis by Solid-Phase Microextraction in Water (물중의 잔류농약 분석을 위한 SPME의 최적조건 선정에 관한 연구)

  • Jang, Mi Ra;Jeong, Hyo June;Lee, Hong Keun
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.4
    • /
    • pp.421-433
    • /
    • 2002
  • This study was conducted to develope a simple, rapid and solvent-free solid-phase microextraction(SPME) procedure for extracting three organochlorine, one triazine and nine organophosphorus pesticides from water. The optimal conditions of SPME for analyses of organochlorine pesticides were obtained at $250^{\circ}C$ of desorption temperature, 45 minutes of equilibrium time, pH 6 and NaCl 0% addition using $100{\mu}m$ polydimethylsiloxane fiber and those of triazine and organophosphorus pesticides were obtained at $270^{\circ}C$ of desorption temperature, 60 minutes of equilibrium time, pH 6 and NaCl 0% addition using $100{\mu}m$ polydimethylsiloxane fiber. This method showed good lineality for organochlorine pesticides between 0.0001 and $10{\mu}g/L$ with regression coefficients ranging 0.9986~0.9992 and for triazine and organophosphorus pesticides between 0.01 and $10{\mu}g/L$ with regression coefficients ranging 0.9867~0.9998.