• Title/Summary/Keyword: Microencapsulation

Search Result 164, Processing Time 0.031 seconds

Effects of microencapsulated organic acids on growth performance, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs

  • Lee, Jun Soeng;Kim, Tae Heon;Song, Min Ho;Oh, Han Jin;Yun, Won;Lee, Ji Hwan;Kim, Yong Ju;Lee, Byong Kon;Kim, Hyeun Bum;Cho, Jin Ho
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.104-113
    • /
    • 2021
  • This study was conducted to investigate the efficiency of a microencapsulated mixture of organic acids (MOA) with low protein in piglet feed on growth performance, diarrhea score, nutrient digestibility, fecal microbial counts, and blood profiles in weaning pigs. A total of 80 pigs [(Landrace × Yorkshire) × Duroc; 6.8 ± 0.48 kg] were randomly assigned to four dietary treatment groups: high protein (HP); low protein (LP); MOA1, LP + 0.2% MOA; and MOA2, LP + 0.3% MOA. The MOA2 group had higher average daily weight gains (during days 0-14 and days 0-28), diarrhea score (during days 0-14, during days 14-28 and days 0-28) and greater digestibility of dry matter (days 14 and 28) compared to the LP group (p < 0.05). However, there were no significant differences (p > 0.05) between the pigs fed diets with the MOA1 and MOA2 in blood profiles and fecal microflora. In conclusion, this study indicates that piglets fed 0.3% MOA in low protein diets maintained similar growth performance and nutrient digestibility, but alleviated the incidence of diarrhea compared to piglets fed high protein diets.

Physicochemical properties and microencapsulation process of rice fermented with Bacillus subtilis CBD2 (Bacillus Subtilis CBD2로 배양된 백미 발효물의 미세캡슐 제조 및 물리화학적 특성)

  • Lee, Dae-Hoon;Park, Hye-Mi;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • This study was conducted to examine the physicochemical properties and micro-encapsulation process of rice fermented with Bacillus subtilis CBD2. The viable bacterial cell, pH, and amylase activity of the rice liquid culture were 7.61 log CFU/mL, pH 5.08 and 159.43 units/mL, respectively. The micro-encapsulated rice liquid culture was manufactured via spray drying with different forming agents: i.e., alginic acid 1.0% and chitosan 0.3%, 0.5%, and 1.0%. The moisture contents of the spray-dried powders were approximately 2.90~3.68%. The color of the L and a value decreased whereas that of the b and ${\Delta}E$ value increased. The particle size and outer topology of the spray-dried rice liquid culture were $48.13{\sim}68.48{\mu}m$ and globular, respectively. The water absorption index of the spray-dried powder (2.40~2.65) was lower than that of the freeze-dried powder (2.66). The water solubility index of the spray-dried powder (9.17~10.89%) was higher than that of the freeze-dried powder (7.12%). The in vitro dissolution was measured for five hours in pH 1.2 simulated gastric fluid, and pH 6.8 and pH 7.4 simulated intestinal fluids, using a dissolution tester at $37^{\circ}C$ with 50 rpm agitation. The amylase survival in the fermented rice was 85.93% through the spray-drying and it was very effectively controlled.

Physicochemical properties and protease activities of microencapsulated pineapple juice powders by spray drying process (분무건조공정을 이용한 파인애플 착즙액 미세캡슐 분말의 물리화학적 특성 및 protease 활성)

  • Park, Hye-Mi;Chae, Ho-Yong;Hong, Joo-Heon
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.84-90
    • /
    • 2015
  • The physicochemical properties and protease activities of spray-dried pineapple juice powders were investigated. The pH, soluble solids, and protease activity of the pineapple juice were pH 5.43, $12.8^{\circ}Brix$, and 4.82 unit/mL, respectively. The optimum pH and temperature of the protease activity from pineapple juice were pH 7.0 and $50^{\circ}C$, respectively. The microencapsulation of pineapple juice was achieved using maltodextrin and alginic acid through spray-drying. The L value and moisture content of the spray-dried powder were higher than those of the freeze-dried powder. The particle size of the freeze-dried powder ($501.57{\mu}m$) was higher than that of the spray-dried powder ($42.58-53.32{\mu}m$). The water absorption and water solubility of the powders were 0.41-0.87, and 90.45-99.76%, respectively. When compared, the protease activities were found to be in the following order : FD (1,297.47 unit/g) > SD-MA-1 (692.08 unit/g) > SD-MA-2 (664.66 unit/g) > SD-MA-3 (642.65 unit/g) > SD-M (633.51 unit/g). In the in vitro dissolution study measurements were conducted for 4 hr in pH 1.2 simulated gastric fluid and pH 6.8 simulated intestinal fluid, using a dissolution tester at $37^{\circ}C$ in 50 rpm. The protease survival of the 3.74-15.69% microencapsulated pineapple juice powders improved with an increase in the treatment concentration of alginic acid.

Preparation of Isophorone Diisocyanate-loaded Microcapsules and Their Application to Self-healing Protective Coating (Isophorone Diisocyanate 함유 마이크로캡슐의 제조와 자기치유형 보호코팅재에의 응용)

  • Lim, Ye-Ji;Song, Young-Kyu;Kim, Dong-Min;Chung, Chan-Moon
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.56-63
    • /
    • 2015
  • The object of this study is to prepare microcapsules containing a diisocyanate compound, apply them to self-healing protective coating, and evaluate the self-healing capability of the coating by atmospheric moisture. Isophorone diisocyanate (IPDI) polymerized under humid atmosphere, indicating that IPDI can be used as a healing agent. Microencapsulations of IPDI were conducted via interfacial polymerization of a polyurethane prepolymer with diol compounds. The formation of microcapsules was confirmed by Fourier-transform infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. The mean diameter, size distribution, morphology and shell wall thickness of microcapsules were investigated by optical microscopy and scanning electron microscopy (SEM). The properties of microcapsules were studied by varying agitation rates and diol structure. The self-healing coatings were prepared on test pieces of CRC board. When scratch was generated in the coatings, the core material flew out of the microcapsules and filled the scratch. The self-healing coatings were damaged and healed under atmosphere with 68~89% relative humidity for 48 h, and SEM and impermeability test for the specimens showed that the scratch could be healed by atmospheric moisture.

Quality Characterization of Salmon Oil Microencapsulated with Various Wall Materials (다양한 피복물질을 이용한 연어 오일의 미세캡슐화 및 품질 특성)

  • LIM, Hyun-Jung;PARK, Seul-Ki;KIM, Min-Jeong;LEE, Won-Kyung;MIN, Jin-Ki;CHO, Young-Je
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1334-1342
    • /
    • 2015
  • The aim of this study was to investigate the quality characterization of salmon oil microencapsulated with maltodextrin (MD), cyclodextrin (CD), sodium caseinate (SC), arabic gum (AG) and WPI. After spray drying to ambient temperature, the salmon oil powders were packed (single package) and placed at room temperature ($25^{\circ}C$) for 30 day. The quality characterization of salmon oil powder including total oil (%), extractable oil (%), encapsulation efficiency (%), fatty acid, SEM, pH, acid value (AV), peroxide value(POV) were investigated. Salmon oil was microencapsulated with a high power yield (> 80%); including the formulation MD/SC and MD/SC/WPI. The microencapsules of MD/SC/WPI presented spherical shapes, smooth texture and non-porous surfaces. The pH of MD/SC/WPI varied from 6.11 to 5.99 (p>0.05). The AV of MD/SC/WPI varied from 4.74 to 4.61 (p>0.05). The pH and AV were not significantly different. The POV of MD/SC/WPI increased with storage day (p<0.05). It was concluded that MD/SC/WPI could delay lipid oxidation and high yield (82.55%) of salmon oil powder.

Development of Multiparticulate-system Composed of Sustained Release-microspheres of Pseudoephedrin${\cdot}$HCI and Immediate Release-pellets of Terfenadine Using Solvent Evaporation Method and Spherically Agglomerated Crystallization Process (수용성 염산슈도에페드린과 난용성 테르페나딘의 구형정석조립법과 액중미립구법을 이용한 서방성펠렛 복합제제의 개발)

  • Rhee, Gye-Ju;Do, Ki-Chan;Kim, Eun-Hee;Park, Jong-Bum;Whang, Sung-Joo
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.305-311
    • /
    • 1997
  • Sustained release-microspheres and immediate release-pellets were prepared to develop a controlled release multiparticulate system containing both water soluble and insoluble dr ug. Pseudoephedrin.HCl (EPD) and terfenadine (TRF) were used as model drugs, respectively. Sustained release-EPD microspheres were prepared by solvent evaporation method using Eudragit RL or RS as a matrix combined with pH-insensitive film coating. Smaller EPD microspheres were obtained when smaller amount of Eudragit as a matrix material or larger amount of magnesium stearate as a dispersing agent was used. However the obtained microspheres did not show syfficient sustained release characteristics. About 97% of EPD was released after 1 hr irrespective of matrix material used. Subsequent coating of the microspheres with pH-insensitive polymer such as Eudragit RS or ethylcelulose (EC) resulted good sustained in 37.5, 73.3 and 92.0% release of encapsulated EPD in distilled water after 1, 3 abd 7 hr, respectively. It corresponds to mean dissolution time (MDT) of 2.3 hr, which is much larger than that of un-coated EPD microspheres (0.0048 hr). Immediate release TRF pellets were prepared by spherically agglomerated crystallization using Eudragit E as an inert matrix and methylene chloride as a liquid binder. Using Eudragit E alone as a matrix resulted in satisfactory physical properties of the pellets such as sphericity, surface texture and flowability, but led to slower release of TRF from pellets than un-modified TRF powder (MDT of 1.70 vs 1.43 hr in pH 1.2 dissolution medium). Introducing propylene glycol or sodium lauryl sulfate as an emulsifier brought about faster release of TRF from pellets (MDT of 1.14 and 0.95 hr, respectively). In conclusion, microencapsulation by solvent evaporation combined with film coating and spherically agglomerated crystallization were successfully utilized to prepare controlled release multiparticulate system composed of sustained release EPD-microspheres and immediate release TRF pellets.

  • PDF

Quality evaluations of bell pepper in cold system combined with TEM (thermoelectric materials) and PCM (phase change material) (PCM을 장착한 열전소자 냉각시스템의 저장 중 피망의 품질 평가)

  • Sung, Jung-Min;Kim, So-Hee;Kim, Byeong-Sam;Kim, Jong-Hoon;Kim, Ji-Young;Kwon, Ki-Hyun
    • Food Science and Preservation
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2016
  • For the distribution of fresh produce, the thermoelectric cooling system combined with thermo electric materials (TEM) and phase change material (PCM) was studied. The PCM used this study was produced by in-situ polymerization technology which referred microencapsulation of hydrocarbon (n-tetradecane and n-hexadecane). In this study, quality characteristics of bell peppers in thermoelectric cooling system combined with TEM and PCM were analyzed and control was placed in an EPS (expanded polystyrene) box. As a result of quality characteristics analysis, weight of bell peppers decreased and moisture content of bell peppers was 90.96~94.43% during storage. Vitamin C content of bell pepper decreased during storage and reduction ratio of control was higher than that of BPT-5 treatment(bell pepper in thermoelectric cooling system with PCM which is kept the temperature at $5^{\circ}C$). The result of color value, on 21 day, ${\Delta}E$ value of BPT-5 treatment was 5.05 while that of control was 41.8. On 21 day, total bacteria count of BPT-5 treated bell pepper shown less than that of control. In conclusion, it suggested that the thermoelectric cooling system combined with PCM improved quality of fresh produce during transportation and storage.

Water-insoluble, Whey Protein-based Microcapsules for Controlled Core Release Application (유청단백질을 이용한 미세캡슐의 응용)

  • Lee, Sung-Je
    • 한국유가공학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.37-61
    • /
    • 2005
  • Microcapsules consisting of natural, biodegradable polymers for controlled and/or sustained core release applications are needed. Physicochemical properties of whey proteins suggest that they may be suitable wall materials in developing such microcapsules. The objectives of the research were to develop water-insoluble, whey protein-based microcapsules containing a model water-soluble drug using a chemical cross-linking agent, glutaraldehyde, and to investigate core release from these capsules at simulated physiological conditions. A model water soluble drug, theophylline, was suspended in whey protein isolate (WPI) solution. The suspension was dispersed in a mixture of dichloromethane and hexane containing 1% biomedical polyurethane. Protein matrices were cross-linked with 7.5-30 ml of glutaraldehyde-saturated toluene (GAST) for 1-3 hr. Microcapsules were harvested, washed, dried and analyzed for core retention, microstructure, and core release in enzyme-free simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) at 37$^{\circ}C$, A method consisting of double emulsification and heat gelation was also developed to prepare water-insoluble, whey protein-based microcapsules containing anhydrous milkfat (AMF) as a model apolar core. AMF was emulsified into WPI solution (15-30%, pH 4.5-7.2) at a proportion of 25-50% (w/w, on dry basis). The oil-in-water emulsion was then added and dispersed into corn oil (50 $^{\circ}C$)to form an O/W/O double emulsion and then heated at 85$^{\circ}C$ for 20 min for gelation of whey protein wall matrix. Effects of emulsion composition and pH on core retention, microstructure, and water-solubility of microcapsules were determined. Overall results suggest that whey proteins can be used in developing microcapsules for controlled and sustained core release applications.

  • PDF

Volatile Changes in Beverages and Encapsulated Powders Containing an Artemisia Extract during Production and Storage (쑥 추출물 함유 음료와 미세캡슐의 제조 및 저장 중 휘발성분 변화)

  • Park, Min-Hee;Kim, Mi-Ja;Cho, Wan-Il;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.271-276
    • /
    • 2011
  • Volatile profiles of beverages and encapsulated powders containing Artemisia princeps Pampan extracts were analyzed by solid-phase microextraction-gas chromatography/mass spectrometry during production and storage. Beverages containing 0.32 and 0.64% extracts were stored at room temperature for 8 weeks and $60^{\circ}C$ for 8 days, respectively. Encapsulated particles were stored at room temperature and $60^{\circ}C$ for 8 days. Total volatiles in beverages decreased significantly during storage, irrespective of storage condition (p<0.05). Terpenoids, including cymene, thujone, and ${\beta}$-myrcene, were major volatiles in beverages, and some volatiles including ethylfuran, vinylfuran, and 2-fufural increased in 60oC samples only. Total volatiles in microcapsules at room temperature were not significant different for 8 days (p>0.05), whereas those at $60^{\circ}C$ increased by 16.5 times. Limonene was the most detected volatile in microcapsules, and aldehydes such as hexanal, pentanal, and octanal, and furans such as 2-butylfuran and 2-pentylfuran increased in the $60^{\circ}C$ samples, which may have originated from oxidized lipids used in the microcapsules.

Liposome-Microencapsulation of Lysozyme and Its Stimulated Release (Lysozyme의 Liposome 미세캡슬화와 유출 촉진)

  • Kim, Tae-Jong;Kim, Young-Sook;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.399-404
    • /
    • 1996
  • Encapsulation of lysozyme using lecithin vesicles and its stimilated release properties were studied. Lecithin vesicles were prepared by the dehydration-rehydration (DR)method. The highest encapsulation efficiency (EE) value of 80.1% was obtained by sonicating the multilamellar vesicles (MLVs) at 100 KHz for 120 min in bath sonicator. The value of entrapment progressively increased with the concentration of lysozyme, while the EE value decreased with the increase of enzyme concentration up to 50mg per 100mg per 100mg of lecithin, and then became nearly constant. At the pH of 5.9, only a small amount of lysozyme was released from DR vesicles during incubation at $37^{\circ}C$ As the pH decreased to 3.0, lysozyme was released more rapidly. Lysozyme release was accelerated for 24h and reached a plateau after 72h incubation with 1% Tween 80, $Ca^{2+}$ gave a pulse-like-release in the first hour, which was followed by a slow release.

  • PDF