• 제목/요약/키워드: Microencapsulation

검색결과 164건 처리시간 0.026초

분무건조방법으로 미세캡슐화된 정어리기름의 수율 측정 (Analysis of Microencapsulation Yield of Sardine Oil Spray Drying)

  • 신명곤;서자영
    • 한국식품영양과학회지
    • /
    • 제28권1호
    • /
    • pp.274-276
    • /
    • 1999
  • Sardine oil was microencapsulated by spray drying method in wall systems containing corn syrup in combination with sodium casein or wheat protein. Analysis of microencapsulation yield of sardine oil was carried out by a modified soxhlet method which could reduce the extraction time of surface oil. Microencapsulation yield of sardine oil was ranged from 65.3 to 93.5 % depending on the sodium casein content.

  • PDF

Pectin-Gelatin Complex Coacervation 에 의한 Indomethacin의 Microencapsulation 에 관한 연구 (Microencapsulation of Indomethacin by Pectin-Gelatin Complex Coacervation Method)

  • 구영순;진수영
    • 약학회지
    • /
    • 제33권3호
    • /
    • pp.191-202
    • /
    • 1989
  • Indomethacin, a non-steroidal antiinflammatory drug inducing gastric irritation, was microencapsulated using pectin-gelatin complex coacervation method. Optimum conditions for microencapsulation and dissolution characteristics of the microcapsules were studied. The optimum pH and pectin-gelatin ratio for microencapsulation were 3.8 and 1:2 respectively. As concentration of colloid solution increased, wall thickness of microcapsules were increased. The dissolution rate of Indomethacin-pectin-gelatin microcapsules prepared by 1.5% and 2% colloid solution were similar but slower than that of Indomethacin-pectin-gelatin microcapsules prepared by 1% colloid solution. The 50% release time ($T_{50%}$) of Indomethacin-pectin-gelatin microcapsules prepared by 1%, 1.5% and 2% colloid solutions were 3 min, 5 min, and 6 min respectively while that of Indomethacin powder was 50 min.

  • PDF

Microencapsulation of Live Probiotic Bacteria

  • Islam, Mohammad Ariful;Yun, Cheol-Heui;Choi, Yun-Jaie;Cho, Chong-Su
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권10호
    • /
    • pp.1367-1377
    • /
    • 2010
  • Scientific research regarding the use of live bacterial cells for therapeutic purposes has been rapidly growing over the years and has generated considerable interest to scientists and health professionals. Probiotics are defined as essential live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. Owing to their considerable beneficial health effects, these microorganisms are increasingly incorporated into dairy products; however, many reports have demonstrated their poor survival and stability. Their survival in the gastrointestinal tract is also questionable. To overcome these problems, microencapsulation techniques are currently receiving considerable attention. This review describes the importance of live probiotic bacterial microencapsulation using an alginate microparticulate system and presents the potentiality of various coating polymers such as chitosan and polylysine for improving the stability of this microencapsulation.

알긴산소다를 이용한 멸치어유의 미세캡슐화 (Microencapsulation of Anchovy Oil by Sodium Alginate)

  • 임상빈;좌미경
    • 한국식품영양과학회지
    • /
    • 제28권4호
    • /
    • pp.890-894
    • /
    • 1999
  • Microencapsulation of anchovy oil as a core material in sodium alginate as a wall material was inves tigated. Microencapsulation was accomplished by injecting an oil/water emulsion, consisting of a mixture of liquefied sodium alginate and emulsifier, under high pressure through an orifice submerged in a calcium lactate solution. Microcapsules suspended in a dispersion fluid were observed under a fluorescence mi croscope to verify the presence of the capsules and to note coalescence or degradation of the capsules. Optimum conditions for microencapsulation of anchovy oil were obtained when 1.0% aqueous solution of sodium alginate contained 3% of a 1:1 ratio of ESPR 25(polyglycerine+polylinoleate) and TW 20(sorbitan laurate+ethylene oxide) as an emulsifier in terms of capsule size and size distribution, and emulsion stability. The airless sprayer produced microcapsules with a diameter between 15.9 and 73.9 m with different concentration of a wall material. The optimum mixing ratio of wall material to core material was 90:10(wt/wt). 0.2% calcium lactate was appropriate as a dispersion fluid.

  • PDF

유당분해효소의 미세캡슐화 수율 측정 (Quantitative Analysis of Microencapsulation of $\beta$-Galactosidase)

  • 신명곤;장판식;민봉기;곽해수
    • 분석과학
    • /
    • 제5권4호
    • /
    • pp.471-475
    • /
    • 1992
  • 유당분해효소를 유지방으로 미세캡슐화시켰으며, 이때의 미세캡슐화 수율을 정량적으로 분석하는 방법을 제시하였다. 본 연구에서 적용한 미세캡슐화 공정과정에 의한 유당분해효소의 불활성화 정도는 초기 효소활성도의 5.2%였으며 이러한 불활성화 정도를 고려하여 유당분해효소의 미세캡슐화 수율을 여러 가지 방법에 의하여 계산하였을 때 각각 92.6% (간접적인 측정방법), 88.6% (열처리에 의한 방법) 및 94.1% (효소처리에 의한 방법)였다.

  • PDF

분무건조기술을 이용한 어유의 미세캡슐화 (Microencapsulation of Fish Oil by Spray Drying using Different Wall Materials)

  • 차광호;양진수;연승호;홍장환;김민수;김정수;황성주
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권2호
    • /
    • pp.113-117
    • /
    • 2007
  • The aim of this study was to investigate the effect of different wall material on the microencapsulation efficiency of microcapsules containing fish oil. The present work reports on the microencapsulation of fish oil by spray drying using hydroxypropyl methylcellulose (HPMC) 2910, maltodextrin, gelatin, sodium caseinate as wall materials. The emulsion stability was assessed by emulsion stability index value (ESI). The microstructural properties of microcapsules was evaluated by scanning electron microscopy (SEM) and microencapsulation efficiency (ME) was assessed by soxhlet method. The highest ESI and ME were observed in the case of a 1:1 gelatin/sodium caseinate ratio and 1:1 glycerin fatty acid ester/lecithin ratio, and ME of microcapsules was increased with increasing the ESI of emulsion. Thus, the stability of emulsion was a critical factor for the encapsulation of fish oil.

Microencapsulation of Water-Soluble Isoflavone and Physico-Chemical Property in Milk

  • Seok, Jin-Seok;Kim, Jae-Soon;Kwak, Hae-Soo
    • Archives of Pharmacal Research
    • /
    • 제26권5호
    • /
    • pp.426-431
    • /
    • 2003
  • This study was carried out to investigate the addition of water-soluble isoflavone into milk by means of microencapsulation technique. The yield of microencapsulation, sensory attributes, and capsule stability of water-soluble isoflavone microcapsules in milk were measured. Coating materials used was polyglycerol monostearate (PGMS), and core material was water-soluble isoflavone. The encapsulation yield of water-soluble isoflavone with PGMS was 67.2% when the ratio of coating material to core material was 15 : 1. The rate of water-soluble isoflavone release from capsules was 18, 19, and 25% when stored at 4,20, and $30^{\circ}C$ for 12 days in milk, respectively. In sensory evaluation, beany flavor and color of microencapsuled water-soluble isoflavone added milk were significantly different from uncapsuled water-soluble isoflavone added milk, however, bitterness was not significantly different. In vitro study, micro-capsules of water-soluble isoflavone in simulated gastric fluid with the range of 3 to 6 pHs were released 3.0∼15.0%, however, the capsules in simulated intestinal fluid with pH 7 were released 95.7% for 40 min incubation time. In conclusion, this study provided that PGMS as coating materials was suitable for the microencapsulation of water-soluble isoflavone, and the capsule containing milk was almost not affected with sensory attribute.

Microencapsulation Effects of Allyl Isothiocyanate with Modified Starch Using Fluidized Bed Processing

  • Lee, Gyu-Hee;Kang, Hyun-Ah;Kim, Kee-Hyuck;Shin, Myung-Gon
    • Food Science and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.1071-1075
    • /
    • 2009
  • Allyl isothiocyanate (AI), a volatile compound of mustard, has excellent antimicrobial effects, but its volatility hinders its wide usage as an ingredient of food products. Microencapsulation technique, therefore, was applied for delaying the release time of AI. For delaying the release time of AI, the mustard powder, which contained AI, was microencapsulated with 5% modified starch by using fluidized bed processing. The efficiency of the controlled release of AI at various pH was analyzed by the head space (HS) analysis and solid phase microextraction (SPME) method using gas chromatography (GC). Also, modified starch encapsulated powder was added into kimchi for applying in food industry. As the result, the release time of AI was delayed by microencapsulation with modified starch and the higher pH could be the faster release of AI. Also, the period until the pH values and total acidity of kimchi reached up to 4.5 and 0.6%, which give its malsour taste, was extended by microencapsulation. These results showed that modified starch encapsulated powder could prolong the preservation in food system.

Microencapsulation of Lactic Acid Bacteria (LAB)

  • Feucht, Andreas;Kwak, Hae-Soo
    • 한국축산식품학회지
    • /
    • 제33권2호
    • /
    • pp.229-238
    • /
    • 2013
  • Lactic acid bacteria (LAB) are added to different food products for a long time due to health beneficial effects on human host. LAB is applied in dairy products, such as yoghurt, cheese, and various fermented products, and also in non-dairy products, such as sausages. However, reaching the human gut alive as well as in a sufficient cell amount to exert positive health effects is still a big challenge, due to LAB sensitive character and vulnerability against harsh and detrimental conditions in human digestive system. Keeping physiological activity of sensitive LAB strains alive is for the formulation of novel food products with a probiotic health claim of utmost interest, thus microencapsulation has been applied and investigated as a promising technique for a good and reliable protection. Microencapsulation allows reduced cell injury or cell loss by retaining cells within the encapsulating membrane and can be enforced by spray-drying, emulsion, extrusion, and a range of other technologies in combination with an appropriate coating material, such as alginate, chitosan, and mixture of these two polymers. In this review, established and well-studied microencapsulation techniques with their favored coating materials, as well as the recent applications of microencapsulated LAB into dairy products will be discussed.

칡 유래 isoflavone의 미세캡슐에 관한 연구 (Microencapsulation of Isoflavone Derived from Pueraria)

  • 김덕한;석진석
    • Journal of Dairy Science and Biotechnology
    • /
    • 제21권2호
    • /
    • pp.105-113
    • /
    • 2003
  • This study was carried out to investigate the addition of Pueraria derived isoflavone into milk by means of microencapsulation technique. The yield microencapsulation sensory attributes, and capsule stability of Pueraria derived isoflavone microcapsules in milk were measured during 12 days. Coating materials used was polyglycerol monostearate(PGMS. The encapsulation yield of Pueraria derived isoflavone was 72.5% with PGMS when the ratio of coating material to core material was 15:1. The rate of pueraria derived isoflavone release was 15, 20, and 25% when stored at 4, 20, and $30^{circ}C$ for 12 days in milk respectively. In sensory evaluation, beany flavor and color of microcapsuled Pueraria derived isoflavone added milk were significantly different from control and uncapsuled Pueraria derived isoflavone added milk, however, bitterness was not significantly different. In vitro study, microcapsules of pueraria derived isoflavone in simulated gastric fluid with the range of 3 to 6 pHs were released 3.0${\sim}$15.0%, however, the capsules in simulated intestinal fluid with pH 7 were released 95.7% for 40 min incubation time. In conclusion, this study provided that PGMS as coating materials was suitable for the microencapsulation of Pueraria derived isoflavone, and the capsule containing milk was not affected with sensory attribute.

  • PDF