• 제목/요약/키워드: Microelectromechanical systems

검색결과 60건 처리시간 0.03초

Grid-Enabled Parallel Simulation Based on Parallel Equation Formulation

  • Andjelkovic, Bojan;Litovski, Vanco B.;Zerbe, Volker
    • ETRI Journal
    • /
    • 제32권4호
    • /
    • pp.555-565
    • /
    • 2010
  • Parallel simulation is an efficient way to cope with long runtimes and high computational requirements in simulations of modern complex integrated electronic circuits and systems. This paper presents an algorithm for parallel simulation based on parallelization in equation formulation and simultaneous calculation of matrix contributions for nonlinear analog elements. In addition, the paper describes the development of a grid interface for a parallel simulator that enables a designer to perform simulations on distant computer clusters. Performances of the developed parallel simulation algorithm are evaluated by simulation of a microelectromechanical system.

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi;Jafari, Kian;Sharifi, Mohammad Javad
    • ETRI Journal
    • /
    • 제40권6호
    • /
    • pp.794-801
    • /
    • 2018
  • This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Microcantilever를 이용한 나노바이오/화학 센서

  • 김태송
    • 세라미스트
    • /
    • 제7권3호
    • /
    • pp.48-54
    • /
    • 2004
  • 반도체 집적화 공정 기술을 바탕으로 기계적 구조물(Micromachined mechanical structure)구현을 가능하게 한 Microelectromechanical systems (MEMS) 기술은 최근 들어 새로운 연구분야로서 크게 각광받고 있다. 이러한 MEMS 기술은 자동차, 산업, 의공학, 정보과학 등에 폭넓게 응용되고 있으며 실리콘 가공 기술 및 미세전기소자 (Microelectronics) 기술이 융합되어 전기$.$기계적인 미세소자를 제작하는데 널리 이용되고 있다. (중략)

  • PDF

Low-Noise MEMS Microphone Readout Integrated Circuit Using Positive Feedback Signal Amplification

  • Kim, Yi-Gyeong;Cho, Min-Hyung;Lee, Jaewoo;Jeon, Young-Deuk;Roh, Tae Moon;Lyuh, Chun-Gi;Yang, Woo Seok;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • 제38권2호
    • /
    • pp.235-243
    • /
    • 2016
  • A low-noise readout integrated circuit (ROIC) for a microelectromechanical systems (MEMS) microphone is presented in this paper. A positive feedback signal amplification technique is applied at the front-end of the ROIC to minimize the effect of the output buffer noise. A feedback scheme in the source follower prevents degradation of the noise performance caused by both the noise of the input reference current and the noise of the power supply. A voltage booster adopts noise filters to cut out the noise of the sensor bias voltage. The prototype ROIC achieves an input referred noise (A-weighted) of -114.2 dBV over an audio bandwidth of 20 Hz to 20 kHz with a $136{\mu}A$ current consumption. The chip is occupied with an active area of $0.35mm^2$ and a chip area of $0.54mm^2$.

Investigation of smart multifunctional optical sensor platform and its application in optical sensor networks

  • Pang, C.;Yu, M.;Gupta, A.K.;Bryden, K.M.
    • Smart Structures and Systems
    • /
    • 제12권1호
    • /
    • pp.23-39
    • /
    • 2013
  • In this article, a smart multifunctional optical system-on-a-chip (SOC) sensor platform is presented and its application for fiber Bragg grating (FBG) sensor interrogation in optical sensor networks is investigated. The smart SOC sensor platform consists of a superluminescent diode as a broadband source, a tunable microelectromechanical system (MEMS) based Fabry-P$\acute{e}$rot filter, photodetectors, and an integrated microcontroller for data acquisition, processing, and communication. Integrated with a wireless sensor network (WSN) module in a compact package, a smart optical sensor node is developed. The smart multifunctional sensor platform has the capability of interrogating different types of optical fiber sensors, including Fabry-P$\acute{e}$rot sensors and Bragg grating sensors. As a case study, the smart optical sensor platform is demonstrated to interrogate multiplexed FBG strain sensors. A time domain signal processing method is used to obtain the Bragg wavelength shift of two FBG strain sensors through sweeping the MEMS tunable Fabry-P$\acute{e}$rot filter. A tuning range of 46 nm and a tuning speed of 10 Hz are achieved. The smart optical sensor platform will open doors to many applications that require high performance optical WSNs.

의료 및 생물학에 응용되는 MEMS기술 (Applications of MEMS Technology on Medicine & Biology)

  • 장준근;정석;한동철
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.108-113
    • /
    • 2002
  • The application fields of medicine and biology are spotlighted because of the increasing concentration of health and the abundance of life. MEMS is very good solution in this fields for the concept of point of care which makes systems more useful and spread wide. This paper shows the major fabrication schemes and application fields of microelectromechanical system specially in medicine and biology fields.

0.18㎛ CMOS 공정을 이용한 MEMS 마이크로폰용 이중 채널 음성 빔포밍 ASIC 설계 (An ASIC implementation of a Dual Channel Acoustic Beamforming for MEMS microphone in 0.18㎛ CMOS technology)

  • 장영종;이재학;김동순;황태호
    • 한국전자통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.949-958
    • /
    • 2018
  • 음성 인식 제어 시스템은 사용자의 음성을 인식하여 주변 장치를 제어하는 시스템이다. 최근 음성 인식 제어 시스템은 스마트기기 뿐만 아니라, IoT(: Internet of Things), 로봇, 차량에 이르기까지 다양한 환경에 적용되고 있다. 이러한 음성 인식 제어 시스템은 사용자의 음성 외에 주변 잡음에 의한 인식률 저하가 발생한다. 이에 본 논문은 사용자의 음성 외에 주변 잡음을 제거하기 위하여 MEMS(: Microelectromechanical Systems) 마이크로폰용 이중 채널 음성 빔포밍 하드웨어 구조를 제안하였으며, 제안한 하드웨어 구조를 TowerJazz $0.18{\mu}m$ CMOS(: Complementary Metal-Oxide Semiconductor) 공정을 이용하여 ASIC(: Application-Specific Integrated Circuit)을 설계하였다. 설계한 이중 채널 음성 빔포밍 ASIC은 $48mm^2$의 Die size를 가지며, 사용자의 음성에 대한 지향성 특성을 측정한 결과 4.233㏈의 특성을 보였다.

Optically Actuated Carbon Nanocoils

  • Wang, Peng;Pan, Lujun;Li, Chengwei;Zheng, Jia
    • Nano
    • /
    • 제13권10호
    • /
    • pp.1850112.1-1850112.6
    • /
    • 2018
  • Optical manipulation on microscale and nanoscale structures opens up new possibilities for assembly and control of microelectromechanical systems and nanoelectromechanical systems. Static optical force induces constant displacement while changing optical force stimulates vibration of a microcantilever/nanocantilever. The vibratory behavior of a single carbon nanocoil cantilever under optical actuation is investigated. A fitting formula to describe the laser-induced vibration characteristics is deduced based on a classical continuum model, by which the resonance frequency of the carbon nanocoil can be determined directly and accurately. This optically actuated vibration method could be widely used in stimulating quasi-1D micro/nanorod-like materials, and has potential applications in micro-/nano-opto-electromechanical systems.

MEMS 기술을 이용한 Flexible Module (Flexible Modules Using MEMS Technology)

  • 김용준;황은수;김용호;이태희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.223-227
    • /
    • 2003
  • A new flexible electronic packaging technology and its medical applications are presented. Conventional silicon chips and electronic modules can be considered as "mechanically rigid box." which does not bend due to external forces. This mechanically rigid characteristic prohibits its applications to wearable systems or bio-implantable devices. Using current MEMS (Microelectromechanical Systems) technology. a surface micromachined flexible polysilicon sensor array and flexible electrode array fer neural interface were fabricated. A chemical thinning technique has been developed to realize flexible silicon chip. To combine these techniques will result in a realization of truly flexible sensing modules. which are suitable for many medical applications.

  • PDF