• 제목/요약/키워드: Microelectromechanical System (MEMS) Technology

검색결과 28건 처리시간 0.025초

Patterning of CVD Diamond Films For MEMS Application

  • Wang, Xiaodong;Yang, Yirong;Ren, Congxin;Mao, Minyao;Wang, Weiyuan
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.167-170
    • /
    • 1998
  • To apply diamond films in microelectromechanical systems(MEMS), it is necessary to develop the patterning technologies of diamond films in the micrometer scale. In this paper, three different kinds of technologies for patterning CVD diamond films carried out by us were demonstrated: selective growth by improved diamond nucleation in DC bias-enhanced microwave plasma chemical vapor deposition (MPCVD) system, selective growth of seeding using diamond-particle-mixed photoresist, and selective etching of oxygen ion beam using Al as the mask. It was show that high selectivity and precise patterns had been achieved, and all the processes were compatible with IC process.

  • PDF

유연성 높은 캔틸레버 제작을 위한 스프레이 코팅 방법 연구 (Study of Manual Spray Coating Method for Fabricating Flexible Cantilever)

  • 김지관
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.366-369
    • /
    • 2017
  • This work presents a detailed study of several parameters on the spray coating method for fabricating a flexible cantilever. Conventionally, spin coating method have been widely used in the microelectromechanical system (MEMS) fabrication process. However, the major drawback of this method is the difficulties in protecting various topography with photoresist film, particularly when the device is manufactured in high aspect ratio. It is also a challenging process to form a small pattern in the etched area. On the other hand, the commercial spray coating systems are not advantageous from an economic perspective and the technique is also providing less efficient. In order to solve these issues, we have developed a manual spray coating system which can be efficiently used by combining the accessories available in the laboratory. The developed spray coating system consists of a spin-coater, motorized stage, a spray gun with the capable of controlling centrifugal force, injection amount, injection angle, and spray range. The major advantage of the proposed spray coating system is its reasonable fabrication cost. Secondly, the system can be easily disassembled after finishing the coating experiment. Owing to the mentioned advantages, we sincerely believe that the proposed spray coating system can be effectively used in many related applications.

MEMS 공정에서의 자기 조립 단분자층 기술 응용 (Applications of Self-assembled Monolayer Technologies in MEMS Fabrication)

  • 이우진;이승민;강승균
    • 마이크로전자및패키징학회지
    • /
    • 제30권2호
    • /
    • pp.13-20
    • /
    • 2023
  • 마이크로 전자기계 시스템 공정에서 표면 처리는 공정 방법의 일환이자 디바이스에 자체적인 기능을 부여하는 역할을 한다. 특히 자기 조립 단분자층은 마이크로 전자기계 시스템 공정에서 표면 개질 및 기능화를 수행하는 표면처리 방법으로 침지 시간과 용액 농도에 따라 강도를 정밀하게 조절할 수 있는 유기 단분자막이다. 고분자 기판이나 금속/세라믹 부품에 자발적으로 흡착되어 형성되는 자기 조립 단분자층은 표면 특성의 개질 뿐만 아니라 나노스케일 단위의 높은 정밀도로 하여금 양산용 리소그래피 기술 및 초민감 유기/생체분자 센서에도 응용되고 있다. 본 논문에서는 마찰 특성의 조절부터 생체 분자의 탐침 기능까지 자기 조립 단분자층 기술이 발전되어 응용되고 있는 다양한 분야들에 대해 소개한다.

산화질소 검출용 마이크로 가스센서 제조공정 (MEMS-Based Micro Sensor Detecting the Nitrogen Oxide Gases)

  • 김정식;윤진호;김범준
    • 한국재료학회지
    • /
    • 제23권6호
    • /
    • pp.299-303
    • /
    • 2013
  • In this study, a micro gas sensor for $NO_x$ was fabricated using a microelectromechanical system (MEMS) technology and sol-gel process. The membrane and micro heater of the sensor platform were fabricated by a standard MEMS and CMOS technology with minor changes. The sensing electrode and micro heater were designed to have a co-planar structure with a Pt thin film layer. The size of the gas sensor device was about $2mm{\times}2mm$. Indium oxide as a sensing material for the $NO_x$ gas was synthesized by a sol-gel process. The particle size of synthesized $In_2O_3$ was identified as about 50 nm by field emission scanning electron microscopy (FE-SEM). The maximum gas sensitivity of indium oxide, as measured in terms of the relative resistance ($R_s=R_{gas}/R_{air}$), occurred at $300^{\circ}C$ with a value of 8.0 at 1 ppm $NO_2$ gas. The response and recovery times were within 60 seconds and 2 min, respectively. The sensing properties of the $NO_2$ gas showed good linear behavior with an increase of gas concentration. This study confirms that a MEMS-based gas sensor is a potential candidate as an automobile gas sensor with many advantages: small dimension, high sensitivity, short response time and low power consumption.

별추적기의 기술개요와 개발동향 (Overview of Star Tracker Technology and Its Development Trends)

  • 주광혁;이상률
    • 한국항공우주학회지
    • /
    • 제38권3호
    • /
    • pp.300-308
    • /
    • 2010
  • 전세계적으로 적용되는 개발개념인 보다 빨리, 더 좋게, 더 값싼 위성을 설계하는 일에 있어 향상된 자세결정시스템을 도입하는 것은 자명한 일이라고 할 수 있다. 오늘날 CCD나 APS 기반의 별추적기는 현존하는 위성의 자세결정용 센서중에서 가장 좋은 정밀도를 제공하고 있다. 본 논문에서는, 별추적기의 기본적인 동작원리와 관련 기술의 개요를 소개함과 동시에 별추적기 개발에서 주요 이슈가 되었던 기술들을 비교 분석한다. 또한 별스캐너로부터 MEMS기술을 적용한 별추적기에 이르기까지, 별추적기의 간추린 역사와 세계 각국에서의 개발현황을 소개한다.

실리콘 다이아프램 구조에서 전단응력형 압전저항의 특성 분석 (Analysis of Shear Stress Type Piezoresistive Characteristics in Silicon Diaphragm Structure)

  • 최채형;최득성;안창회
    • 마이크로전자및패키징학회지
    • /
    • 제25권3호
    • /
    • pp.55-59
    • /
    • 2018
  • 본 연구에서는 Si/$SiO_2$/Si-sub 구조의 SDB (silicon-direct-bonding) 웨어퍼 상에 형성된 다이아프램(diaphragm)에 제조된 전단응력형 압전저항 특성을 분석하였다. 다이아프램은 MEMS (Microelectromechanical System) 기술을 이용해 형성하였다. TMAH 수용액을 이용해 웨이퍼 후면을 식각하여 형성된 다이아프램 구조는 각종 센서제작에 활용할 수 있다. 본 연구에서는 다이아프램 상에 형성시킨 전단응력형 압전저항의 최적의 형상조건을 ANSYS 시뮬레이션을 통하여 찾고 실제 반도체 미세가공기술을 이용해 다이아프램 구조를 형성시키고 이에 붕소(boron)을 주입하여 형성시킨 전단응력형 압전저항의 특성을 시뮬레이션 결과와 비교 분석하였다. 압력감지 다이아프램은 정방형으로 제조되었다. 다이아프램의 모서리의 중심부에서 동일한 압력에 대한 최대 전단응력은 구조물이 정방형일 때 발생한다는 것을 실험으로 확인할 수 있었다. 따라서 압전저항은 다이아프램의 가장자리 중앙에 위치시켰다. 제조된 전단응력형 압전저항은 시뮬레이션 결과와 잘 일치하였고 $2200{\mu}m{\times}2200{\mu}m$ 크기의 다이아프램에 형성된 압전저항의 감도는 $183.7{\mu}V/kPa$로 나타났으며 0~100 kPa 범위의 압력에서 1.3%FS의 선형성을 가졌으며 감도의 대칭성 또한 우수하게 나타났다.

전사방법을 이용한 폴리머 필름에 내재된 실리콘 나노구조물 어레이 제작 (Fabrication of a Silicon Nanostructure Array Embedded in a Polymer Film by using a Transfer Method)

  • 신호철;이동기;조영학
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.62-67
    • /
    • 2016
  • This paper presents a silicon nanostructure array embedded in a polymer film. The silicon nanostructure array was fabricated by using basic microelectromechanical systems (MEMS) processes such as photolithography, reactive ion etching, and anisotropic KOH wet etching. The fabricated silicon nanostructure array was transferred into polymer substrates such as polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), and polycarbonate (PC) through the hot-embossing process. In order to determine the transfer conditions under which the silicon nanostructures do not fracture, hot-embossing experiments were performed at various temperatures, pressures, and pressing times. Transfer was successfully achieved with a pressure of 1 MPa and a temperature higher than the transition temperature for the three types of polymer substrates. The transferred silicon nanostructure array was electrically evaluated through measurements with a semiconductor parameter analyzer (SPA).

Effects of Form Errors of a Micromirror Surface on the Optical System of the TMATM(Thin-film Micromirror ArrayTM) Projector

  • Jo, Yong-Shik;Kim, Byoung-Chang;Kim, Seung-Woo;Hwang, Kyu-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.98-105
    • /
    • 2000
  • The projectors using liquid crystal display(LCD) have faults such as low optical efficiency, low brightness and even heat generation. To solve these problems reflective-type spatial light modulators based on MEMS (Microelectromechanical Systems) technology have emerged. Digital Micromirror DeviceTM(DMDTM), which was already developed by Texas Instruments Inc., and Thin-film Micromirror ArrayTM(TMATM), which has been recently developed by Daewoo Electronics Co., are the representative examples. The display using TMATM has particularly much higher optical efficiency than other projectors. But the micromirrors manufactured by semiconductor processes have inevitable distortion because of the limitations of the manufacturing processes, so that the distortions of their surfaces have great influence on the optical efficiency of the projector. This study investigated the effects of mirror flatness on the optical performance, including the optical efficiency, of the TMATM projector. That is to say, as a part of the efforts to enhance the performance of the TMATM projector, how much influence the form errors of a micromirror surface exert on the optical efficiency and the modulation of gray scale of the projector were analyzed through a pertinent modeling and simulations.

  • PDF

턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석 (Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect)

  • 김옥삼
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

Lab-on-a-Chip for Monitoring the Quality of Raw Milk

  • Choi Jeong-Woo;Kim Young-Kee;Kim Hee-Joo;Lee Woo-Chang;Seong Gi-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권8호
    • /
    • pp.1229-1235
    • /
    • 2006
  • A lab-on-a-chip (LoC) was designed for simultaneous monitoring of microorganisms, antibiotic residues, somatic cells, and pH in raw milk. The LoC was fabricated from polydimethylsiloxane (PDMS) using microelectromechanical system (MEMS) technology, which consisted of two parts; a protein array and microchannel. The protein array was fabricated by immobilizing five types of antibodies corresponding to two microorganisms, two antibiotic residues, and somatic cells. A sol-gel film was deposited on a glass substrate to immobilize the antibodies. The target analytes in raw milk could be bound with the corresponding antibody by an immunoreaction, and the antigen-antibody complex was detected using fluorescence microscopy. SNARF-dextran was used as a pH indicator, and the SNARF-entrapped hydrogel was attached to the microchannel in the chip. After injecting the milk sample into the channel, the pH was measured by monitoring the change in fluorescence intensity by fluorescence microscopy. The on-chip simultaneous assay of two microorganisms (E. coli O157:H7 and Streptococcus agalactiae), two antibiotic residues (penicillin G and dihydrostreptomycin), and neutrophils was successfully accomplished using the proposed LoC system.