• Title/Summary/Keyword: Microcystis bloom

Search Result 108, Processing Time 0.027 seconds

Algicidal Effects of Korean Oak Trees against the Cyanobacterium Microcystis aeruginosa (남조류 Microcystis aeruginosa에 대한 국내 참나무들의 살조 효과)

  • Park, Myung-Hwan;Kim, Baik-Ho;Han, Myung -Soo;Ahn, Chi-Yong;Yoon, Byung-Dae;Oh, Hee-Mock
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.4 s.114
    • /
    • pp.475-481
    • /
    • 2005
  • In an effort to identify a new environment-friendly algicide, we examined the ability of extracts from the leaves and stems of nine Korean oak tree species to inhibit growth of the bloom-forming cyanobacterium, Microcystis aeruginosa. At a concentration of 100 mg $L^{-1}$, five of the oak tree extracts (QAT-L, QAT-5, QAS- L, QGI-5, and QSA- L) decreased the cell density of M. aeruginosa by over 90% for 7 days. At a concentration of 20 mg $L^{-1}$, the same five extracts inhibited the growth of M. aeruginosa by approximately 50%. The minimum concentration of oak tree extracts required for effective inhibition of M. aeruginosa (20 mg $L^{-1}$) is comparable to that of the known algicide, tannic acid (17 mg $L^{-1}$), which is thought to be one of the main active ingredients in the oak tree extract. These findings suggest that oak extracts may be useful as an environment-friendly algicide to control the bloomforming cyanobacterium, M. aeruginosa, in eutrophic waters.

Removal of Microcystis aeruginosa using polyethylenimine-coated alginate/waste biomass composite biosorbent (양이온성 고분자(polyethylenimine)가 코팅된 알지네이트/폐바이오매스 복합 흡착소재를 사용한 유해 미세조류 Microcystis aeruginosa의 제거)

  • Kim, Hoseon;Byun, Jongwoong;Choi, In Tae;Park, Yun Hwan;Kim, Sok;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.741-748
    • /
    • 2019
  • As the occurrence of harmful algal blooms (HABs) have become severe in precious water resources, the development of efficient harmful algae treatment methods is considering as an important environmental issue for sustainable conservation of water resources. To treat HABs in water resources, various conventional physical and chemical methods have been utilized and showed treatment efficiency, However, these methods can lead to discharging of cyanotoxins into the water bodies by chemical or physical algal cell lysis or destruction. Thus, to overcome this limitation, the development of safe HABs treatment methods is required. In the present study, adsorption technology was investigated for the removal of harmful algal species, Microcystis aeruginosa from aqueous phases. Industrial waste biomass, Corynebacterium glutamicum biomass was valorized as biosorbent (PEI-modified alginate/biomass composite fiber; PEI-AlgBF) for M. aeruginosa through immobilization with alginate matrix and cationic polymer (polyethylenimine; PEI) coating. The functional groups characteristic of PEI-Alg was determined using FT-IR analysis. By adsorption process used PEI-AlgBF, 52 and 67% of M. aeruginosa could be removed under the initial density of M. aeruginosa 200×104 cells mL-1 and 50×104 cells mL-1, respectively. As the increasing surface area of PEI-AlgBF, the removal efficiency was increased. In addition, we could find that adsorptive removal of M. aeruginosa has occurred without any M. aeruginosa cell lysis and destruction.

Effects of Temperature, Food Concentration, and Shell Size on Filtering Rate and Pseudofeces Production of Unio douglasiae on Microcystis aeruginosa (수온, 먹이농도, 패각 크기가 Microcystis aeruginosa에 대한 말조개의 여과율 및 배설물 생산에 미치는 영향)

  • Lee, Yeon-Ju;Kim, Baik-Ho;Kim, Nan-Young;Um, Han-Yong;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.61-67
    • /
    • 2008
  • This study was conducted to evaluate filtering rate (FR) and pseudofeces production (PFP) of a freshwater filter-feeding bivalve, Unio douglasiae, on a toxic cyanobacterium (Microcystis aeruginosa). The experiments were conducted under the various conditions of water temperature $(5{\sim}35^{\circ}C)$, mussel size $(5.6{\sim}13.3cm)$ and food con centrations $(49{\sim}491{\mu}g\;Chl-{\alpha}L^{-1})$. Among the applied temperature, the maximum FR $(0.41L\;gAFDW^{-1}hr^{-1})$ and PFP (0.47mg $gAFDW^{-1}hr^{-1}$) were observed at 15 and $25^{\circ}C$, respectively. Both weight-based FR and PFP were not correlated with the mussel size, and the values lied in a limited range with some degree of variation. Likewise, no significant relations between FR and PFP was observed in the mussel size. The FR values were negatively correlated with food concentration, while PFP showed positive correlation. Among the applied food concentrations, the maximum FR (0.34L $gAFDW^{-1}hr^{-1}$) and PFP (0.06mg $gAFDW^{-1}hr^{-1}$) appeared in $113{\mu}g\;Chl-{\alpha}L^{-1}$ and $491{\mu}g\;Chl-{\alpha}L^{-1}$, respectively. These results indicate that the grazing of Unio douglasiae are affected by various parameters, and it may be applied as an effective biofilter to inhibit Microcystis bloom under appropriate application. However, further studies on the fate of excreted pseudofeces are needed to understand their possibility of stimulating nuisant algal growth.

Metaproteomic analysis of harmful algal bloom in the Daechung reservoir, Korea

  • Choi, Jong-Soon;Park, Yun Hwan;Kim, Soo Hyeon;Park, Ju Seong;Choi, Yoon-E
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.424-432
    • /
    • 2020
  • The present study aimed to analyze the metaproteome of the microbial community comprising harmful algal bloom (HAB) in the Daechung reservoir, Korea. HAB samples located at GPS coordinates of 36°29'N latitude and 127°28'E longitude were harvested in October 2013. Microscopic observation of the HAB samples revealed red signals that were presumably caused by the autofluorescence of chlorophyll and phycocyanin in viable cyanobacteria. Metaproteomic analysis was performed by a gelbased shotgun proteomic method. Protein identification was conducted through a two-step analysis including a forward search strategy (FSS) (random search with the National Center for Biotechnology Information (NCBI), Cyanobase, and Phytozome), and a subsequent reverse search strategy (RSS) (additional Cyanobase search with a decoy database). The total number of proteins identified by the two-step analysis (FSS and RSS) was 1.8-fold higher than that by one-step analysis (FSS only). A total of 194 proteins were assigned to 12 cyanobacterial species (99 mol%) and one green algae species (1 mol%). Among the species identified, the toxic microcystin-producing Microcystis aeruginosa NIES-843 (62.3%) species was the most dominant. The largest functional category was proteins belonging to the energy category (39%), followed by metabolism (15%), and translation (12%). This study will be a good reference for monitoring ecological variations at the meta-protein level of aquatic microalgae for understanding HAB.

Grazing Rate and Pseudofaeces Production of Native Snail Cipangopaludina chinensis malleata Reeve on Toxic Cyanobacterium Microcystis aeruginosa (한국산 논우렁이의 유해조류 섭식율 및 배설물 생산)

  • Hwang, Soon-Jin;Jeon, Mi-Jin;Kim, Nan-Young;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.spc
    • /
    • pp.77-85
    • /
    • 2008
  • Grazing rates (GR) and pseudofaeces production (PFP) of native snail, Chinese mystery snail (Cipangopaludina chinensis malleata Reeve) on natural colonial morphs of Microcystis aeruginosa was measured. C. chinensis was collected from the upstream of the Geum River (Boryeong, Korea), where they co-habituated with Unio douglasiae and Lanceolaria acrorhyncha. The experiments were performed to evaluate the GR and PFP at different conditions such as; incubation time (1, 3, 5, 7, 9 and 11 hr), body size (3 to 6.1 cm, n=28), snail density (0.5, 1, 1.5 and 2.0 ind. $L^{-1}$) and prey concentration (168.3, 336.7, 505.0 and $673.0{\mu}g\;Chl-{\alpha}L^{-1}$). All experiments were triplicated, and conducted in transparent acrylic vessel (3L in volume). Regarding feeding time, a highest GR (0.538L $gAFDW^{-1}h^{-1}$) and PFP $(7.18mgAFDW^{-1})$ appeared at 1hr and 7hr after snail stocking, respectively. Interestingly, the snail, smaller than 4.5cm in body size, showed a wide range of GR ($-4.173{\sim}1.087L\;gAFDW^{-1}h^{-1}$) for the initial period (1 and 4hrs of stocking), compared to those greater than 4.5cm, which showed a stable FR, higher than 0.5L $gAFDW^{-1}h^{-1}$. Upon density effect, the density of 1.5 ind. $L^{-1}$ induced the most effective inhibition on Microcystis biomass with highest PFP. On the prey concentration, highest GR (0.897L $gAFDW^{-1}h^{-1}$) and PFP (3.67 mg $gAFDW^{-1}h^{-1}$) were induced at the level of $168.3{\mu}g\;Chl-{\alpha}L^{-1}$ and $673{\mu}g\;Chl-{\alpha}L^{-1}$, respectively. GR and PFP of this freshwater snail on the cyanobacterial bloom (M. aeruginosa) varied with the feeding conditions, and they were comparatively high for a short period of time less than 7hrs regardless of the stocking condition. Our results suggest that this freshwater snail has a potential to control cyanobacterial bloom when provided with suitable condition.

Control of Cyanobacteria (Microcystis aeruginosa) Blooms by Floating Aquatic Plant (Iris pseudoacorus): an in situ Mesocosm Experiment Using Stable ($^{13}C$, $^{15}N$) Isotope Tracers ($^{13}C$, $^{15}N$ 추적자 실험을 통한 부유 수생식물(Iris pseudoacorus)의 Cyanobacteria (Microcystis aeruginosa) 성장억제능력 평가)

  • Kim, Min-Seob;Lee, Yeon-Jung;Kim, Baik-Ho;Hwang, Soon-Jin;An, Kwang-Guk;Park, Sun-Koo;Ume, Han-Yong;Shin, Kyung-Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.3
    • /
    • pp.280-291
    • /
    • 2011
  • Bottom-up approaches to control of Microcystis aeruginosa blooms were comparatively investigated through an in situ mesocosm experiment using aquatic plants (Iris pseudoacorus). In the mesocosm experiments, floating I. pseudoacorus, seemed to be effective in controlling massive M. aeruginosa blooms in an agricultural reservoir, exhibiting a close coupling with temporal variations in Chl-a and DO concentration. Shading by floating I. pseudoacorus resulted in a reduced phytoplankton abundance inhibiting light energy availability. Moreover, I. pseudoacorus may suppress phytoplankton growth through the excretion of chemical substances, likes a allelopathy, that inhibit phytoplankton photosynthetic activity. The $^{15}N$ atom % of I. pseudoacorus showed higher values than POM, suggesting that I. pseudoacorus assimilates DIN predominantly compared to phytoplankton, which was mostly M. aeruginosa. This result strongly suggests that the M. aeruginosa bloom should be regulated by aquatic plants, like I. pseudoacorus, this approach can affect zooplankton composition. This is the first study that has used stable isotope tracers to evaluate the biomanipulation efficiency through floating I. pseudoacorus.

Cyanobacterial Blooms and Water Quality of Major Recreational Park Ponds in the Capital Region (수도권 주요 공원 연못의 수질 특성과 남조류 대발생)

  • Park, Myung-Hwan;Suh, Mi-Yeon;Hwang, Soon-Jin;Kim, Yong-Jae;Han, Myung-Soo;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.54-65
    • /
    • 2008
  • The seasonal dynamics of phytoplankton and water quality were evaluated bimonthly at 7 park ponds in the capital region from October 2004 to August 2005. With out the change of water temperature $(0.4\sim26.0^{\circ}C)$, cyanobacteria dominated in park ponds such as Gyungbokgung Gyunghyaeru and Seokchon reservoir. The standing crops of phytoplankton was significant related with cell densities of cyanobacteria (r=0.993), while they did not significant correlation with environmental factors. Almost of all park ponds in the capital region were classified as eutrophic state with high TP concentrations and TN/TP ratios less than 10. Major dominant cyanobacteria were as followed; Anabaena sp., Aphanocapsa elachista, Lyngbya contorta, Merismopedia elegans, Microcystis aeruginosa, M. wesenbergii, Microcystis sp., Oscillatoria sp., Phormidium tenue, and Plectonema sp. To date, although the concentration of chlorophyll-${\alpha}$ and cyanobacterial densities in the capital region was below the 'danger' level of WHO guidelines value, the monitoring of cyanobacterial densities and its toxin (microcystin) in recreational/bath water should be continued.

The Relationship between Phytoplankton Productivity and Water Quality Changes in Downstream of Nakdong River (낙동강 하류에서 식물플랑크톤 생산력과 수질 변화와의 관계)

  • 박홍기;정종문;박재림;홍용기
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.101-106
    • /
    • 1999
  • The relationship between primary productivity and changes in water quality was investigated at Mulgum station, a site downstream of the Nakdong River, Korea. Phytoplankton production was characterized by blooms of Microcystis aeruginosa during the summer and Stephanodiscus hantzschii during the winter. Primary production and secondary production by bacterioplankton ranged from 1.5~53.5 mg-C/ι day and 0.1~0.3 mg-C/ι day, respectively. Distribution of total organic carbon appeared to be highly correlated with phytoplankton biomass, especially during blooms of M. aeruginosa, when particulate organic carbon was 81% of total organic carbon and the main source of organic materials supplied into the water. The correlation coefficient between chlorophyll-a and BOD was 0.86. Thus it was concluded that autochthonous phytoplankton mostly affected the BOD level. Total bacterial numbers were also highly correlated with chlorophyll-a ($r^2$= 0.84) and the bacterial community appears to be regulated by phytoplankton biomass in this area.

  • PDF

Daily Variation of Phytoplankton and Water Quality in the Lower Nakdong River

  • Lee, You-Jung;Jung, Jong-Mun;Shin, Pan-Se;Joo, Gea-Jae
    • ALGAE
    • /
    • v.20 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • Daily variation of phytoplankton community and environmental parameters were investigated at the lower Nakdong River (Mulgum) from January 2002 to December 2003 to investigate the dynamics of a phytoplankton community in detail. The daily results of water quality in this investigation showed pH (8.1 $\pm$ 0.7), DO (10.3 $\pm$ 2.7 $mg{\cdot}l^{-1}$), water temp. (18.8 $\pm$ 7.4°C), BOD (2.4 $\pm$ 1.0 $mg{\cdot}l^{-1}$), COD (5.3 $\pm$ 1.2 $mg{\cdot}l^{-1}$) and chl. a (43.5 $\pm$ 35.1 mg ${\cdot}m^{-3}$). The results of nutrient factors were the following: TN (3.1 $\pm$ 0.8 $mg{\cdot}l^{-1}$), NO3-N (2.5 $\pm$ 0.5 $mg{\cdot}l^{-1}$), TP (90 $\pm$ 48 ${\mu}g\;{\cdot}\;l^{-1}$), PO4-P (43 $\pm$ 30 ${\mu}g\;{\cdot}\;l^{-1}$). Dominant phytoplankton species during the study period were diatom (Stephanodiscus hantzschii, Aulacoseira granulata var. angustissima and A. italica) and cyanobacteria (Microcystis aeruginosa, Aphanizomenon flos-aquae). The small centric diatom, Stephanodiscus hantzschii, was repeatedly dominant from late fall to the following spring (mean and maximum cell density, 2.3 × 103 $\pm$ 3.8 × 103, 4.5 × 105 cells $ml^{-1}$, respectively). Pinnate diatom, Aulacoseira granulata var. angustissima and A. italica, were frequently observed all season except January to March. Cyanobacteria, Microcystis aeruginosa and Aphanizomenon flos-aquae, proliferated in summer of 2002 except in 2003 due to heavy precipitation. The dominant zooplankton species (March-early May) was rotifer (Brachionus, Keratella, Polyarthra) and cladocerans (Diaphanosoma). The daily observed dynamics of the phytoplankton community in the lower Nakdong River in this study may play an important role in increasing the detailed resolution of limnological information and serving as ecological data for future studies.

Biotoxic Cyanobacterial Metabolites Exhibiting Pesticidal and Mosquito Larvicidal Activities

  • Kumar, Ashok;Dhananjaya P. , Singh;Tyagi, M.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • A freshwater bloom-forming cyanobacterium, Microcystis aeruginosa, and local soil isolate Scytonema sp. strain BT 23 were demonstrated to contain biotoxic secondary metabolites with pesticidal and mosquito larvicidal activities. A purified toxic constituent from M aeruginosa showed an absorption maximum at 230 nm and its toxicity symptoms, Rf value on TLC, and retention time observed ill an HPLC analysis were similar to those of the hepatotoxic heptapeptide microcystin-LR. The bioactive constituent of the Scytonema sp. was less polar in nature and exhibited two peaks at 240 and 285 m. When applied to two cruciffrous pests, Pieris brassicae and Plutella flostella, the crude extracts and toxic principles from the two cyanobacteria showed significant antifeedant activity in a no-choice bioassay, and at higher concenuations exhibited contact toxicity to the insect larvae. The purified toxin from M. aeruginosa was found to be more effective and produced 97.5 and $92.8\%$ larval mortality in the two pests, fo11owing 2 h of toxin treatment at a concentration of $25{\mu}g$ Per leaf disc (2.5 cm dia.). Meanwhile, similar treatment with the purified toxin from Sytonema sp. stain BT 23 only produced 73 and $78\%$ mortality in the two pests. The cyanobacterial constituents also showed significant activity against Culex and Anopheles larvae. The M. aeruginosa toxin ($20{\mu}g\;ml^-1$) caused 98.2 and $88.1\%$ mortality in the Culex and Anopheles larvae, respectively, while the purified toxin from the Sytonema sp. was less toxic and only produced a 96.3 and $91.2\%$ mortality, respectively, at a much higher concentration ($40{\mu}g\;ml^-1$). Accordingly, the current results point to certain hitherto unknown biological properties of cyanobacterial biotoxins.