• Title/Summary/Keyword: Microcrack

Search Result 169, Processing Time 0.02 seconds

A study of stress distribution and subsequent failure in crystalline rock specimens under uniaxial compression (일축압축하 결정질암석 공식체에서의 응력분포 및 파괴에 대한 연구)

  • 정교철
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.93-100
    • /
    • 1999
  • In rock, there are many microsopic structures which influence the mechnical behavior of rock. Many microstructures interact with each other, and furthermore, material constants vary discontinuously within rock, as most rocks are composed of several minerals. Taking into account this feature, it may be possible to contemplate a microstructure of rock as a unit cell by which the rock is constituted periodically. If this idealization is acceptable, the homogenization method can be applied. In this research, various microcracks on rock specimens were observed through a stereoscopic microscope under uniaxial compression. On the other hand, local stress distribution in the periodic-micro structure was calculated by the homogenization method. Then it is shown that there is a possibility to establish a relation between the behavior of microcrack and macroscopic load quantitatively by the linear fracture mechanics.

  • PDF

P wave Velocity Variation of the Pochon Granite due to the Cyclic Loadings (압축피로에 의한 포천화강암의 P파속도 변화 특성)

  • Kim, Yeong Hwa;Jang, Bo-An;Kim, Jae Dong;Rhee, Chan Goo;Moon, Byeung Kwan
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.231-240
    • /
    • 1997
  • The behavior of rocks and microcrack development due to fatigue stresses are investigated using cyclic loading tests and ultrasonic velocity measurements. Twenty six medium-grained granite samples from the Pochon area are selected for measurements. Ultrasonic velocities are measured for samples before fatigue test to characterize the pre-existing microcracks. Then, thirteen different cycles of loadings with 70% and 80% dynamic strength are applied to the samples. The ultrasonic velocities are measured again to compare velocities after applications of fatigue stress with those before applications of fatigue stress. The results show that most microcracks are developed along the direction parallel to the axis of loading and that the amount of microcracks increases, as loading levels and numbers of cycle increase.

  • PDF

Micro-damage Process in Granite Under the State of Water-saturated Triaxial Compression (수침삼축압축하에서 관찰되는 화강암의 미세 파괴)

  • Yong Seok Seo;Gyo Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.243-251
    • /
    • 1999
  • Granitic rock, by its nature, contains numerous micro-discontinuities including grain boundary, microcracks, microcavities and mineral cleavages. The brittle fracture of rock is a progressive procedure in which the failure occurs with prior microcracking. In this paper, initiation, propagation and interaction of microcracks are considered to be the dominant, controlling micromechanisms of macroscopic failure. The authors show a few patterns of microcrack initiation and propagation by using sequential photographs of water-saturated granite taken under triaxial compressive state. The failure process was observed directly and continuously by a newly developed triaxial compressive test system.

  • PDF

Fabrication of $Y_{2}$$O_{3}$ buffer layers for coated conductor via MOD process (MOD법에 의한 coated conductor용 $Y_{2}$$O_{3}$ 완충층의 제조)

  • 허순영;이동철;김영국;고재웅;유재무
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.95-97
    • /
    • 2003
  • Y$_2$O$_3$ buffer layers have been fabricated on Ni tapes via MOD process. Films were annealed either in reductive or oxidative condition Successfully (200) orientated buffer layers were grown. The out-of-plane orientation of film were characterized by Δ$\theta$ is about 5.4$^{\circ}$. Although films prepared with acetic acid contains a large amount of microcrack, those prepared with 2-MOE(2-methoxy ethanol) exhibit a crack-free surface.

  • PDF

In Situ Observation of Slow Crack Growth in a Whisker-Reinforced Alumina Matrix Composite (SiC 휘스커 보강 알루미나 복합재료에서 Slow Crack Growth 현상의 직접관찰 연구)

  • 손기선;김우상;이성학
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.203-213
    • /
    • 1996
  • In this study the subcritical crack growth behavior in an Al2O3-SiCw composite has been investigated using in situ fracture technique of applied moment double cantilever beam (AMDCB) specimens indside an SEM. This technique allows the detailed observation of whisker and grain bridging in the crack wake region. The experimental results indicated that the KI-a curve was deviated from the conventional powder law form and that the existed a region where the rate of microcrack growth was decreased with increasing the externally applied stress intensity factor. This behavior could be explained by arising crack growth resistance i.e. R-curve behavior which was associated with crack shielding due to whisker and grain bridging. The R-curve was also analyzed from the KI-a curve data in order to quantify the bridging effect in the Al2O3-SiCw composite.

  • PDF

Toughening of $Al_2$O$_3$/LaAl$_{11}$O$_{18}$ Composites (Al$_2$O$_3$/LaAl$_{11}$O$_{18}$ 복합재료의 인성증진)

  • 장병국;우상국
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.12
    • /
    • pp.1266-1273
    • /
    • 1998
  • Al2O3/(5~20vol%)LaAl11O18 composites in which the second phase was dispersed with a elongated grain shape were fabricated using Al2O3 and La2O3 composition by hot-pressing. In order investigate the in-fluence of LaAl11O18 on the toughening of LaAl11O18 on the toughening of Al2O3 matrix composites AE(acoustic emission) analysis was con-ducted together with an evaluation of fracture toughness using of SEPB technique. The degree of AE events occurred in composites were more than those in monolithic alumina. The occurrences of AE event increased with increasing the amount of LaAl11O18 phase in the Al2O3/LaAl11O18 composite is two times higher compared to monolithic alu-mina. The main toughening mechanism was attributed to the bridging of LaAl11O18 grains at tip of pro-pagating crack.

  • PDF

Evaluation and monitoring of degradation mechanism of Li-ion battery for portable electronic device (휴대전자기기용 저용량 리튬이온 배터리의 충방전 열화 기구 분석 및 모니터링)

  • Byeon, Jai Won
    • Journal of Applied Reliability
    • /
    • v.13 no.2
    • /
    • pp.129-140
    • /
    • 2013
  • As a fundamental experimental study for reliability improvement of lithium ion secondary battery, degradation mechanism was investigated by microscopic observation and acoustic emission monitoring. Microstructural observation of the decomposed battery after cycle test revealed mechanical and chemical damages such as interface delamination, microcrack of the electrodes, and solid electrolyte interphase (SEI). Acoustic emission (AE) signal was detected during charge and discharge of lithium ion battery to investigate relationships among cumulative count, discharge capacity, and microdamages. With increasing number of cycle, discharge capacity was decreased and AE cumulative count was observed to increase. Observed damages were attributed to sources of the detected AE signals.

Microstructures and Densification Behaviors of $Al_2O_3-ZrO_2(ZTA)$ Composites Fabricated by a Surface-induced Coating (표면-유기 코팅에 의해 합성한 $Al_2O_3-ZrO_2(ZTA)$ 복합체의 미세구조와 소결거동)

  • 장현명;문종하;김광수
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.17-24
    • /
    • 1994
  • Al2O3-ZrO2(ZTA) composites were fabricated by a surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3. The fabricated composites were characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains throughout the Al2O3 matrix. The fracture toughness (KIC) and the bending strength of ZTA composites sintered at 1$600^{\circ}C$, respectively, were 5.6 MPa.m1/2 (for 20 wt% ZrO2) and 600 MPa (for 15wt% ZrO2). The fraction of tetragonal ZrO2 phase decreases as the total content of ZrO2, suggesting that both the stress-induced tlongrightarrowm transformation and the microcrack nucleation contribute to the toughening of the ZTA composites fabricated by the surface-induced coating.

  • PDF

Effect of Heterogeneous Microstructure on the Fracture Toughness of Weld Metal (용착금속의 파괴인성에 미치는 불균일 미세조직의 영향)

  • 정현호;김철만;김형식;김우식;홍성호
    • Journal of Welding and Joining
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of microstructure on the fracture toughness of multi pass weld metal has been investigated. The micromechanisms of fracture process are identified by in-situ scanning electron microscopy(SEM) fracture observation using single edge notched specimen. The notches of the in-situ fracture specimens were carefully located such that the ends of the notches were in the as-deposited top bead and the reheated weld metal respectively. The observation of in-situ fracture process for as-deposited top bead indicated that as strains are applied, microcracks are formed at the interfaces between soft proeutectoid ferrite and acicular ferrite under relatively low stress intensity factor. Then, the microcracks propagate easily along the proeutectoid ferrite phase, leading to final fracture. These findings suggest that proeutectoid ferrite plays an important role in reducing the toughness of the weld metal. On the other hand, reheated regions showed that the microcrack initiated at the notch tip grows along the localized shear bands under relatively high stress intensity factor, confirming that reheated area showing momogeneous and fine microstructure would be beneficial to the fracture resistance of weld metal.

  • PDF

A probabilistic micromechanical framework for self-healing polymers containing microcapsules

  • D.W. Jin;Taegeon Kil;H.K. Lee
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.167-177
    • /
    • 2023
  • A probabilistic micromechanical framework is proposed to quantify numerically the self-healing capabilities of polymers containing microcapsules. A two-step self-healing process is designed in this study: A probabilistic micromechanical framework based on the ensemble volume-averaging method is derived for the polymers, and a hitting probability model combined with a crack nucleation model is then utilized for encountering microcapsules and microcracks. Using this framework, a series of parametric investigations are performed to examine the influence of various model parameters (e.g., the volume fraction of microcapsules, microcapsule radius, radius ratio of microcracks to microcapsules, microcrack aspect ratio, and scale parameter) on the self-healing capabilities of the polymers. The proposed framework is also implemented into a finite element code to solve the self-healing behavior of tapered double cantilever beam specimens.