• Title/Summary/Keyword: Microclimate control

Search Result 75, Processing Time 0.022 seconds

Distribution of clothing microclimate for making comfortable military uniform (쾌적한 군복 설계를 위한 의복기후 분포)

  • Kim, Yang-Won
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.231-247
    • /
    • 2003
  • To get the basic data for making comfortable military uniforms and to examine the distribution of clothing microclimate, seasonal fluctuations of skin temperature, subjective sensation, and clothing microclimate were measured from 10 males. The subject were questioned on thermal comfort in experiment. Clothing microclimate temperature at breast, skin temperature at four sites (breast, upper arm, thigh, leg), deep body temperature at eardrum( tympanic temperature), and subjective sensation were measured for an hour in the controlled climatic chamber. The subjects felt comfortable when skin temperature were recorded $34.43^{\circ}C$ at breast, $33.53^{\circ}C$ at upper arm, $32.9^{\circ}C$ at thigh, and 32.50 at leg. Then mean skin temperature was $33.55\pm$$0.63^{\circ}C$. Clothing microclimate temperature ranged from 31.2 to $33.8^{\circ}C$, and clothing microclimate humidity ranged from 49.80~52.41%. In the comparison of these results with the microclimate of military uniforms, it needs more insulation in clothing for military uniforms. It also says that military uniforms should be made of the textiles which can control humidity.

  • PDF

THE SIMPLE & EASY ENVIROMENTAL CONTROL FOR THE MEMBRANE GREENSHED OF VEGETABLES IN CHINA

  • Weicheng, Xia
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.495-504
    • /
    • 1993
  • In China, the membrane greensheds are chiefly for yielding vegetables, using simple & easy methods to control the microclimate. The yield of the vegetable is raised & the lack of variety of vegetable in the slack season is overcome. This paper presents the general planning , the environmental control and the reformed designs of such greenshed in China.

  • PDF

자연에너지와 건축조경계획

  • Jo, Gyun-Hyeong
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.22-29
    • /
    • 1993
  • Indoor thermal environment and energy consumption of buildings are preferentially affected by the microclimate around buildings. It is the first method to improve energy conservation effect of buildings and the ways to utilize natural energy for the comfortable residential environment that the difference between the microclimate condition and the indoor thermal condition is made in minimum as far as possible. There are many factors to control and minimize the difference, but landscape element is the major one among the factors. In this respect, the report analyzes landscape elements and their function to control microclimate and presents basic data for the desirable landscape planning mehtods to improve energy conservation effect of buildings and to attain the comfortable residential environment.

  • PDF

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

A Study on the Physiological Responses and the Microclimate in Girdle (Girdle 착용이 인체생리반응과 의복기후에 미치는 영향)

  • Kim Hyun Sik;Choi Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.11 no.2 s.24
    • /
    • pp.57-67
    • /
    • 1987
  • The purpose of this study was to confirm the effects of girdle on the physiological responses and the microclimate in summer. The measuring points were rectal temperature, skin temperature, pulse rate and sweat volume as physiological responses and the inside clothing temperature, relative humidity as microclimate when the subjects wore girdle (girdle A; polyurethan+nylon, girdle B; polyurethan+cotton) for the period of rest and exercise in climate chamber. The enviromental conditions were at $25^{\circ}C$ ($65{\pm}5\%$ RH) and $30^{\circ}C$ ($75{\pm}5\%$ RR). The results were as followings. 1. Mean skin temperature increased in girdle during the exercise at $30^{\circ}C$. 2. The pulse rate decreased in girdle during the rest at $25^{\circ}C$. In the case of girdle A, it was remarkably decreased. Rectal temperature increased in girdle A and B during the exercise at $25^{\circ}C$. But the kinds of girdle didn't affect the pulse rate and rectal temperature. 3. The total sweat volume in girdle was larger than in control. 4. The difference between skin temperature and inside clothing temperature of abdomen had a tendency to increase at all experiment condition. 5. The relative humidity of inside ($RH_1$) and outside ($RH_2$) of girdle increased in girdle during the rest at $25^{\circ}C$ and $30^{\circ}C$. And the relative humidity of wearing girdle B was hig-her than girdle A during the rest at $25^{\circ}C$ and $30^{\circ}C$. The $RH_1$ after stepping at $30^{\circ}C$ was the highest in girdle A and the lowest in control. From this point of view, we concluded that physiological responses and the microclimate were affected by wearing girdle. And mean skin temperature and relative humidity of inside clothing were affected by the materials of girdle.

  • PDF

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

Optimization of Growth Environment in the Enclosed Plant Production System Using Photosynthesis Efficiency Model (광합성효율 모델을 이용한 밀폐형 식물 생산시스템의 재배환경 최적화)

  • Kim Keesung;Kim Moon Ki;Nam Sang Woon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • This study was aimed to assess the effects of microclimate factors on lettuce chlorophyll fluorescent responses and to develop an environment control system for plant growth by adopting a simple genetic algorithm. The photosynthetic responses measurements were repeated by changing one factor among six climatic factors at a time. The maximum Fv'/Fm' resulted when the ambient temperature was $21^{\circ}C,\;CO_2$ concentration range of 1,200 to 1,400 ppm, relative humidity of $68\%$, air current speed of $1.4m{\cdot}s^{-1}$, and the temperature of nutrient solution of $20^{\circ}C$. In PPF greater than $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, Fv'/Fm' values were decreased. To estimate the effects of combined microclimate factors on plant growth, a photosynthesis efficiency model was developed using principle component analysis for six microclimate factors. Predicted Fv'/Fm' values showed a good agreement to measured ones with an average error of $2.5\%$. In this study, a simple genetic algorithm was applied to the photosynthesis efficiency model for optimal environmental condition for lettuce growth. Air emperature of $22^{\circ}C$, root zone temperature of $19^{\circ}C,\;CO_2$ concentration of 1,400 ppm, air current speed of $1.0m{\cdot}s^{-1}$, PPF of $430{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and relative humidity of $65\%$ were obtained. It is feasible to control plant environment optimally in response to microclimate changes by using photosynthesis efficiency model combined with genetic algorithm.

Intelligent Microclimate Control System Based on IoT

  • Altayeva, Aigerim Bakatkaliyevna;Omarov, Batyrkhan Sultanovich;Cho, Young Im
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.254-261
    • /
    • 2016
  • The present research paper is devoted to solving an urgent problem, i.e., the energy saving and energy efficiency of buildings. A rapid settlement method and experimental control of the energy conservation based on the specific characteristics of the thermal energy consumption for the heating and ventilation of the buildings, and as well as the rapid development of wireless sensor networks, can be used in a variety of monitoring parameters in our daily lives. Today's world has become quite advanced with smart appliances and devices such as laptops, tablets, TVs, and smartphones with various functions, and their use has increased significantly in our day-to-day lives. In this case, the most important role is played by a wireless sensor network with its development and use in heterogeneous areas and in several different contexts. The fields of home automation, process management, and health management systems make extensive use of wireless sensor networks. In this paper, we explore the main factors of the microclimate in an indoor environment. We control the temperature humidity, and other factors remotely using sensors and Internet-of-Things technologies.

Thermophysiological Response of Human Body in Wearing Codling Vest (냉각조끼착용에 따른 인체의 온열생리학적 특성)

  • 권오경;김태규
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.148-154
    • /
    • 2000
  • To do this study, we produced cooling vest newly. Rectal temperature was ascended approximately from 37.2$^{\circ}C$ to 38.05$^{\circ}C$ in lab, but wearing cooling vest, the temperature was descended 0.2 while wearing developed product compare with existing product. Mean skin temperature which was showed distribution from 32.8∼36.5$^{\circ}C$, it was descended 1.0∼1.1$^{\circ}C$, while wearing cooling vest and comparing with existing product, wearing developed product was lower 0.5$^{\circ}C$, While wearing developed product, it was found that they had lower tendency than exiting product. Specifically in case of temperature within clothing(chest) 0.2∼2.0$^{\circ}C$ in case of humidity within clothing 2∼8% RH. Facts from above we confirmed that clothing microclimate had been improved and space was happened between body and garment in order to control. In subjective sensation, existing product made negative response during experiment period from participants, but developed product was nearing to comfortable area.

  • PDF

Recovery of Ecosystem Service Functions through Ecological Restoration Practice: A Case Study of Coal Mine Spoils, Samcheok, Central Eastern Korea (훼손된 생태계의 복원을 통한 생태계 서비스의 회복: 채탄쓰레기 매립지 복원지의 사례)

  • Oh, Woo Seok;Lee, Chang Seok
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.2
    • /
    • pp.102-111
    • /
    • 2014
  • Ecological restoration is regarded as a major strategy for preventing biodiversity loss and thereby enhancing ecosystem service. This study was performed to evaluate ecosystem service value that the restored ecosystem provides. Ecosystem service was evaluated for provisioning and regulating services. The former service was evaluated by comparing similarities in a viewpoint of floristic composition to the reference site between the restored and the unrestored sites. Species composition of the restored site was found to be more similar to the reference site than that of the unrestored site and thereby restoration practice contributed for enhancing the provisioning service. Regulating service was evaluated based on microclimate control, soil amelioration, and improvement of water holding capacity. The value of ecosystem services in terms of microclimate control, soil amelioration, and improvement of water holding capacity was higher in the restored site than in the unrestored site. In consequence, ecological restoration of coal mine spoils contributed for enhancing the ecosystem service value of the corresponding site and thereby is rewarding the cost invested for restoration.