• Title/Summary/Keyword: Microclimate Data

Search Result 86, Processing Time 0.036 seconds

Characteristic of Growth and Active Ingredient in Angelica gigas Nakai according to Forest Environment by Climate Zone (기후대별 산림환경에 따른 참당귀의 생육 및 지표성분 특성)

  • Kim, Nam Su;Jeon, Kwon Seok;Lee, Hyun Seok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.3
    • /
    • pp.221-228
    • /
    • 2020
  • Background: Angelica gigas Nakai, that belong to the Umbelliferae family, is one of the traditional medicinal plants in Korea. Its roots have been used to treat gynecological diseases. In this study, growth characteristics and index components were compared with the forest microclimate at several forest sites. Methods and Results: A. gigas was planted in three climatic zones according to the temperature (southern temperature zone - Hamyang, central temperature zone - Bonghwa, and northern temperature zone - Jeongseon) and growth characteristics were investigated in comparison with the forest microclimate. Our results indicated that the root diameter and length, and fresh and dry weight were the highest in Jeongseon. The total content of decursin was the highest in Jeongseon (9.52%), followed by those in Hamyang (8.07%) and Bonghwa (7.48%), respectively. Additionally, the yield of decursin (1.39 g) was the highest in Jeongseon. Conclusions: The yield and index components were influenced by the microclimate in the forests, and it was assumed that high altitude and low temperature affected the increase in growth and index components. These results will be useful as basic data to study the correlation among environmental conditions, growth, and index components.

Effects of Urban Park on Thermal Comfort in Summer - An Analysis of Microclimate Data of Seoul Forest Park - (여름철 도시공원의 열환경 개선 효과 - 서울숲 미기상 관측자료 분석을 중심으로 -)

  • Zoh, Hyunmin Daniel;Kwon, Tae Kyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.30-41
    • /
    • 2022
  • This study investigates the heat mitigation effects and thermal comfort improvement due to urban parks during summer. Self-developed monitoring devices to measure long-term microclimate data were installed in three spots, including the park plaza, waterside, and roadside in Seoul Forest Park, and measurements were taken from July 9 to July 30. The results of the measurement are as follows. The daily temperature of the park plaza and waterside were found to be 2.7℃ and 2.9℃ lower than the roadside and 5.5℃ and 7.4℃ lower than the roadside from 10:00 to 16:00. In addition, the Universal Thermal Climate Index (UTCI) measurement was applied to measure the thermal comfort at each point. In the average daily analysis, a significant difference was found between the park plaza, the waterside, and the roadside, and a greater difference was found between 10:00 to 16:00. Also, although there was no significant difference due to the weather condition, a statistically significant difference was also found in the average PM10 and CO2 concentrations. It is found to be higher in the order from the roadside, park plaza, and waterside for PM10 concentration and park plaza, roadside, and waterside for CO2. In sum, although the difference in measured microclimate data and thermal comfort index results were different depending on the time and weather conditions at the three points, the park plaza and waterside, which are located inside the park, showed improved thermal comfort conditions and lower temperatures than the roadside outside the park.

Research trends on prevention of heat stroke using clothing: Focusing on practical research in Japan (의복을 활용한 열중증 예방 대책에 관한 연구 동향 조사: 일본의 실용 지향적 연구를 중심으로)

  • Son, Su-Young
    • Human Ecology Research
    • /
    • v.56 no.5
    • /
    • pp.473-491
    • /
    • 2018
  • This study identifies Japanese study content on heat stroke prevention measures using clothes, provides basic data for quantitative wearing assessment studies, presents a developmental direction for those, and helps invigorate further research. Studies were collected concerning clothing-based heat stroke measures in order to analyze the following factors: current status of heat stroke by industry and working environment, heat stroke and body cooling method, clothing microclimate and air circulation in a hot environment, hot environments and wearable sensors, and heat stress reduction and skin exposure. The current WBGT standard does not consider the diversity of wearing clothes according to the working environment. Therefore, it is preferable to add a correction value in consideration of design, materials, and ventilation to prevent heat strokes. For the heat stroke and body cooling method, wearing water-perfused clothing is effective to reduce heat stress and maintain exercise ability. Changing the material and design of clothing or wearing air-conditioned clothing can improve ventilation and the clothing microclimate. However, further evaluation is needed on the effectiveness of air-conditioned clothing as a heat stroke prevention product. The measurement method using a wearable sensor can provide real-time data on the body response due to working in a hot environment. Therefore, it is an effective alarm for heat stroke. Skin exposure area and heat dissipation efficiency should be considered to prevent heat stroke. Reducing the covering area by exposing the head, neck, and limbs, and wearing breathable material can prevent heat stroke from increased body temperature.

Data-Based Model Approach to Predict Internal Air Temperature in a Mechanically-Ventilated Broiler House (데이터 기반 모델에 의한 강제환기식 육계사 내 기온 변화 예측)

  • Choi, Lak-yeong;Chae, Yeonghyun;Lee, Se-yeon;Park, Jinseon;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.5
    • /
    • pp.27-39
    • /
    • 2022
  • The smart farm is recognized as a solution for future farmers having positive effects on the sustainability of the poultry industry. Intelligent microclimate control can be a key technology for broiler production which is extremely vulnerable to abnormal indoor air temperatures. Furthermore, better control of indoor microclimate can be achieved by accurate prediction of indoor air temperature. This study developed predictive models for internal air temperature in a mechanically-ventilated broiler house based on the data measured during three rearing periods, which were different in seasonal climate and ventilation operation. Three machine learning models and a mechanistic model based on thermal energy balance were used for the prediction. The results indicated that the all models gave good predictions for 1-minute future air temperature showing the coefficient of determination greater than 0.99 and the root-mean-square-error smaller than 0.306℃. However, for 1-hour future air temperature, only the mechanistic model showed good accuracy with the coefficient of determination of 0.934 and the root-mean-square-error of 0.841℃. Since the mechanistic model was based on the mathematical descriptions of the heat transfer processes that occurred in the broiler house, it showed better prediction performances compared to the black-box machine learning models. Therefore, it was proven to be useful for intelligent microclimate control which would be developed in future studies.

The effects of subcutaneos fat on the system of clothing weights (체지방률이 착의량체계에 미친 영향)

  • 김양원
    • Journal of the Korean Home Economics Association
    • /
    • v.35 no.4
    • /
    • pp.139-148
    • /
    • 1997
  • The rates of subcutaneos fat on the system of clothing weights including clothing microclimate subjective sensations were measured to get basic data to develop guideline for healthy clothing life. for this study skinfold thickness the rate of subcutaneos fot clothing microclimate subjective sensations and clothing weights were measured from 85 male and 105 female colligians. The results were as follows: 1. The rate of subcutaneos fat showed negative correlation with the temperature inside clothing in chest but not with the temperatures in back and thigh. The correlation was not significant between the rate of subcutaneos fat and humidity inside clothing 2. The correlation between the rate of subcutaneos fat and thermal sensations was positively significant at 5% level. However no correlation was found between the rate of subcutaneos fat and humid sensations. 3. There was significant correlation between the rate of subcutaneos fat and under clothing weights and total clothing weights.

  • PDF

Clothing Microclimate and Subjective Sensations by Wearing Long Johns in Mildly Cold Air (겨울철 실내 온도에서 내복 착용에 따른 의복 기후와 주관적 감각)

  • Kim Myung-Ju;Lee Joo-Young
    • Journal of the Korean Home Economics Association
    • /
    • v.42 no.10 s.200
    • /
    • pp.91-104
    • /
    • 2004
  • The purpose of this study was to examine the differences of clothing microclimates and the subjective sensations according to age, gender and clothing weight for $19^{\circ}C$ air temperature. This study was done to gain fundamental data related to saving heating energy and to improve health through wearing underwear (long johns) in lower indoor temperatures. The subjects were divided into four groups (6 young males, 5 young females, 6 old males, 6 old females), and our experiment consisted of three conditions; the first condition was wearing long underwear in $19^{\circ}C$ air (19CUW condition); the second condition was without wearing long underwear in $19^{\circ}C$ air (19C condition); and the third condition was without wearing underwear in $24^{\circ}C$ air (24C condition). The experiment showed that the clothing microclimate temperature and humidity was the lowest in the 19C condition and the highest in the 24C condition irrespective of age and gender. The clothing microclimate in the 19CUW condition was not significantly distinguishable from the other conditions. Clothing microclimate temperature and humidity when the subjects responded thermal comfort was $28\~34^{\circ}C$ and $15\~40\%$RH without any significant difference according to age and gender. For the thermal sensation, the 24C condition was regarded as the warmest environment by the four groups, and the next preference was the 19CUW condition (p<0.001). Young females and old males showed a tendency to feel colder than young males and old females. For the thermal sensation of hands and feet, the young groups felt the warmest in the 24C condition and the coolest in the 19 C condition (p<0.001). However, old males felt neutral for the foot thermal sensation without any significant difference between the three conditions. Old females felt neutral for both the hands and feet thermal sensations without any significant difference between the three conditions. Thermal preference was the highest in the 24C condition for the 4 groups. In the 19CUW condition, for the thermal preference, most young males and females responded 'No change'; on the other hand, mea of the old responded 'Warmer'(p<0.001). It was the 24C condition that the 4 subject groups felt the most thermally comfortable. In the 19CUW condition, over $80\%$ of responses of each group expressed satisfaction and in the 19C condition, over $80\%$ of responses of each group, except young females, expressed satisfaction. In conclusion, in view of the clothing microclimate and subjective sensations, the 24C condition was the condition that gave subjects the least cold stress and the best subjective preference. However, the 19C condition and the 19CUW condition was not such a cold stress as to give healthy subjects a thermal burden.

Correlation Between the Microclimate and the Crown of Platanus orientalis and Ulmus davidiana (버즘나무(Platanus orientalis)와 느릅나무(Ulmus davidiana)의 수관부와 미기후간의 상호 관계)

  • Lee, Jae-yoon;Ki, Kyong-Seok
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.4
    • /
    • pp.793-799
    • /
    • 2016
  • This study examined Platanus orientalis and Ulmus davidiana planted in downtown parks to identify the correlations among microclimatic factors such as temperature in the crown, air flow, and wind speed. For the field survey, measurements were taken at 1 hour intervals from 09:00 am to 06:00 pm in August. For the measurement of microclimatic factors, data on temperature, light intensity, air flow, and wind speed were collected using a quantum sensor (PAR Quantum Sensor SKP215), a precision thermometer (Pt1000-Sensor), and a combination anemometer (1467 G4 & HG4). The results of the analysis demonstrated that both Platanus orientalis and Ulmus davidiana, showed a greater cooling effect inside the crown as compared with the outside temperature. The cooling effect inside the crown was more evident with air flow and wind speed factors. With relation to wind, the inner temperature of the crown of Platanus orientalis decreased due to air flow while that of Ulmus davidiana decreased due to wind speed. With no wind, the average variation in temperature inside the crown was $-0.9^{\circ}C$ for Ulmus davidiana and $-0.958^{\circ}C$ for Platanus orientalis, indicating that Platanus orientalis was relatively more effective in lowering the temperature of the planting space than Ulmus davidiana. This study is significant because it shows that different tree species have different effects on the microclimate and that factors affecting the formation of the microclimate of trees may vary with species. Further studies on species other than broad leaf trees, such as evergreen trees and shrubs, are required in order to plan the distribution of landscaping trees that are effective in regulating the microclimate within urban green spaces.

A Study on the Characteristic Micro-Climate of Myeong-Kwan Kim House and the Moisture Content Behavior of Outside Exposed Columns (김명관고택의 미기후 특성과 외진노출기둥의 함수율 양상에 관한 연구)

  • Park, Yong-Shin;Kim, Yun-Sang
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.22 no.3
    • /
    • pp.33-40
    • /
    • 2020
  • Wood is one of the main materials of wooden building. Hanok also uses wood as its main component. Recently, Hanok continues to be built. Wood is affected by the climatic environment. The growth of decay bacteria is activated at more than 80% relative humidity. The microclimate environment and moisture content were measured for architectural cultural properties that have been maintained for a long time as a wooden building. The method analyzed the measured data by distinguishing between cloudy and sunny days. In the case of the old house, Anchae moisture content was higher than that of Sarangchae. This seems to be due to the narrow front yard or the planting of trees. The microclimate environment inside the house began to decrease in humidity from 8 am. According to the survey data, the relative humidity was less than 80% from 9 am when there was wind around 4-6 am. It appeared an hour earlier than in the absence of wind. As a result, the time interval for dehumidifying of wood was widened. Therefore, the wooden building is open to the front so there is airflow under the eaves during the daytime and wind in the morning appear to be alternatives in order to lower the moisture content.

Environmental Modeling and Thermal Comfort in Buildings in Hot and Humid Tropical Climates

  • Muhammad Awaluddin Hamdy;Baharuddin Hamzah;Ria Wikantari;Rosady Mulyadi
    • Architectural research
    • /
    • v.25 no.4
    • /
    • pp.73-84
    • /
    • 2023
  • Indoor thermal conditions greatly affect the health and comfort of humans who occupy the space in it. The purpose of this research is to analyze the influence of water and vegetation elements as a microclimate modifier in buildings to obtain thermal comfort through the study of thermal environment models. This research covers two objects, namely public buildings and housing in Makassar City, South Sulawesi Prov-ince - Indonesia. Quantitative methods through field surveys and measurements based on thermal and personal variables. Data analysis based on ASHRAE 55 2020 standard. The data was processed with a parametric statistical approach and then simulated with the Computational Fluid Dynamics (CFD) simulation method to find a thermal prediction model. The model was made by increasing the ventilation area by 2.0 m2, adding 10% vegetation with shade plant characteristics, moving water features in the form of fountains and increasing the pool area by 15% to obtain PMV + 0.23, PPD + 8%, TSV-1 - +0, Ta_25.7℃, and relative humidity 63.5 - 66%. The evaluation shows that the operating temperature can analyze the visitor's comfort temperature range of >80% and comply with the ASHRAE 55-2020 standard. It is concluded that water elements and indoor vegetation can be microclimate modifiers in buildings to create desired comfort conditions and adaptive con-trols in buildings such as the arrangement of water elements and vegetation and ventilation systems to provide passive cooling effects in buildings.

Microclimate, Growth and Yield in Wheat under North-South and East-West Row Orientation (이랑방향에 따른 밀 군락의 미기상과 생육 및 수량)

  • Yoon, Seong-Tak;Jerry, Johnson
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.155-159
    • /
    • 2004
  • This experiment was carried out to evaluate the microclimate of wheat canopy, growth and yield characteristics of wheat under north-south and east-west row orientation. The variety used in this experiment was "AG South 2000", which was developed in USA. Solar radiation, air temperature, relative humidity, and soil temperature were monitored by data logger from March to May in 2002, The ratio of light penetration to the bottom from the upper canopy was 36.8% in north-south and 21.4% in east-west row orientation. Temporal march of light penetration to the bottom from March to May decreased as wheat developed canopy structure and decreased a little from May as plant were matured. The highest light penetration to the bottom from upper canopy occurred at 13:00 in both north-south and east-west row orientations, respectively which were 36 times in north-south and 27 times in east-west row orientation, respectively. Daily maximum temperature at the bottom of canopy occurred at 14:00 with 29 times in north-south, while 19 times were obtained at 14:00 and 15:00, respectively in east-west row orientation. Relative humidity at the bottom of the canopy in east-west yow orientation showed higher than that of north-south row orientation. Occurrence of daily maximum soil temperature of north-south showed one hour later compared with east-west yow orientation. 1000 grain weight and test weight of north-south row orientation was higher than those of east-west vow orientation. Correlation coefficient between solar radiation of upper canopy and 1000 grain weight showed r=$0.8132^{*}$, and between air temperature of upper canopy and number of spikes per $\textrm{m}^{2}$ and 1000 grain weight showed significant positive correlation with r=$0.8139^{*}$, and r=$0.8293^{*}$, respectively.