• 제목/요약/키워드: Microchannel heat exchanger

검색결과 23건 처리시간 0.019초

마이크로채널과 핀 튜브 열교환기를 적용한 가정용 에어컨디셔너의 성능 평가 (Evaluation of Performance of a Residential Air-Conditioning System Using Microchannel and Fin-and-Tube Heat Exchanger)

  • 윤린
    • 설비공학논문집
    • /
    • 제19권1호
    • /
    • pp.28-35
    • /
    • 2007
  • In this study the seasonal performance of a residential air conditioning system having either a fin-and-tube condenser or a microchannel condenser is experimentally investigated. A commercially available 7 kW capacity residential air conditioning system having a fin-and-tube condenser served as the base system. The test results show that the system with a microchannel heat exchanger has a reduced refrigerant charge amount of 10%, the coefficient of performance is increased by 6% to 10%, and the SEER is increased by 7% as compared with those of the base system. Moreover, the condensing pressure of the system is decreased by 100 kPa and the pressure drop across the condenser is decreased by 84%. The microchannel heat exchanger enhances the SEER of the residential air conditioning system by providing better heat transfers at reduced pressure drops.

이산화탄소 사이클에서 열교환기의 형태 변화에 따른 성능특성 비교 (Comparison of Performance Characteristics with Heat Exchanger Type in $CO_2$ Cycle)

  • 배경진;조홍현
    • 설비공학논문집
    • /
    • 제22권10호
    • /
    • pp.657-664
    • /
    • 2010
  • The theoretical analysis of performance characteristics in a $CO_2$ cycle with the heat exchanger type was carried out. The size and performance of the fin-tube and microchannel heat exchanger were compared with operating conditions. As a result, the performance of the fin-tube gascooler and evaporator were more sensitive to the variation of operating condition compared to that of the microchannel gascooler and evaporator. Beside, the sizes of microchannel gascooler and evaporator could be decreased by 73% and 76%, respectively, compared to those of the fin-tube type gascooler and evaporator with the similar capacity. The COP and reliability of the $CO_2$ system can be increased by using a microchannel heat exchanger.

채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구 (Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape)

  • 전승원;김윤호;이규정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

직관 마이크로채널 PCHE의 열전달특성 및 압력강하 (Heat Transfer Characteristics and Pressure Drop in Straight Microchannel of the Printed Circuit Heat Exchangers)

  • 김윤호;문정은;최영종;이규정
    • 대한기계학회논문집B
    • /
    • 제32권12호
    • /
    • pp.915-923
    • /
    • 2008
  • The performance experiments for a microchannel printed circuit heat exchanger (PCHE) of high-performance and high-efficiency on the two technologies of micro photo-etching and diffusion bonding were performed in this study. The microchannel PCHE were experimentally investigated for Reynolds number in ranges of 100 $\sim$ 700 under various flow conditions in the hot side and the cold side. The inlet temperatures of the hot side were conducted in range of $40^{\circ}C\;{\sim}\;50^{\circ}C$ while that of the cold-side were fixed at $20^{\circ}C$. In the flow pattern, the counter flow was provided 6.8% and 10 $\sim$ 15% higher average heat transfer rate and heat transfer performance than the parallel flow, respectively. The average heat transfer rate, heat transfer performance and pressure drop increases with increasing Reynolds number in all the experiment. The increasing of inlet temperature in the experiment range has not an effect on the heat transfer performance while the pressure drop decrease slightly with that of inlet temperature. The experimental correlations to the heat transfer coefficient and pressure drop factor as a function of the Reynolds number have been suggested for the microchannel PCHE.

열교환기 형태에 따른 이산화탄소용 가스쿨러와 증발기의 성능비교 (The Performance Comparison of $CO_2$ Gascooler and Evaporator with Heat Exchanger Type)

  • 배경진;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제6권2호
    • /
    • pp.15-22
    • /
    • 2010
  • The natural refrigerants have used into HVAC equipments because the CFCs and HFCs have some environmental problems like high ODP and GWP. The carbon dioxide has small effect on the environmental problem but also good thermodynamics properties. In this study, the simulation study on the performance and characteristics of a $CO_2$ gascooler and evaporator using a fin-tube and microchannel heat exchanger has been conducted. Besides, the comparison of performance with operating condition was carried out in order to apply to the $CO_2$ heat pump system. As a result, the front sizes of a gascooler and evaporator using a microchannel were decreased by 63% and 58%, respectively, compared to those using a fin-tube. The performance of the fin-tube gascooler and evaporator were more responsive to the variation of operating conditions compared to that of microchannel. The pressure drop of a fin-tube heat exchanger was higher than that of a microchannel one.

자동차용 에어컨의 마이크로채널 응축기의 수치적 모델 개발 (Numerical Model Development of a Microchannel Condenser for Mobile Air-Conditioning Systems)

  • 쉐흐리야 이샤크;나비드 울라;최준호;김만회
    • 한국수소및신에너지학회논문집
    • /
    • 제33권4호
    • /
    • pp.430-436
    • /
    • 2022
  • This paper presents the numerical model development of a microchannel heat exchanger in mobile air-conditioning and heat pump applications. The model has been developed based on the effectiveness-NTU method using a segment-by-segment modeling approach. State-of-art correlations are used for refrigerant- and air-side heat transfer coefficients and pressure drops. The calculated heat condenser capacities are in good agreement with experimental data, with an average difference of 1.86%. The current model can be used for microchannel condenser simulations under various operating conditions. It is anticipated to improve productivity in designing and optimizing microchannel heat exchangers with folded louver fin geometry.

S 형상의 마이크로 채널을 가진 마이크로 판형 열교환기의 열전달 특성 및 압력강하에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics and Pressure Drop in Micro Plated Heat Exchangers with S-shape of Microchannel)

  • 서장원;김윤호;문정은;이규정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1876-1881
    • /
    • 2007
  • The micro plated heat exchangers were designed to transfer more heat/volume or mass than previous heat exchangers within the context of the design constraints specified. The increase of the surface-to-volume ratio results in an increase of the interfacial area. This enhances considerably the performance of a heat exchanger. This can be an important component in a wide range of applications fuel cell, aerospace, automotive, electronic system and home heating, etc). In this study, the performance evaluation of micro plated heat exchangers under the counter flows with straight and S-shaped channel are carried out. The pressure drop as well as inlet and outlet fluid temperature were measured at steady state under various operating conditions and the total heat transfer rate were also calculated.

  • PDF

마이크로 적층기술을 이용한 열교환기 생산모델 개발과 경제성 평가 (Development of Heat Exchanger Production Model Based on the Microlamination Technology and Estimation of its Economic Efficiency)

  • 유범상;김재희;박상민
    • 한국공작기계학회논문집
    • /
    • 제15권3호
    • /
    • pp.97-103
    • /
    • 2006
  • The development of a heat exchanger production model based on the microlamination technology and it's economic efficiency is addressed. A microchannel production model is proposed for the high-volume production. The microlamination system is made up of lamina patterning, laminae sorting and laminae bonding. A cost estimation model is developed based on the hewn cycle time and capital equipment costs. An economic efficiency analysis is performed to determine the cost drivers under the different market and product scenarios. The result of the economic efficiency analysis indicated that the device size and the production rate have a great effect on the overall manufacturing cost of microlamination devices. And it can be concluded that the microlamination should focus on bonding larger laminae and reducing both cycle time and warpage.

새로운 채널 배열을 통한 마이크로채널 열교환기 성능 향상 수치 연구 (Numerical Study on the Performance of a Microchannel Heat Exchanger with a Novel Channel Array)

  • 전승원;이규정;문동주
    • 대한기계학회논문집B
    • /
    • 제35권11호
    • /
    • pp.1119-1126
    • /
    • 2011
  • 기존 마이크로채널 열교환기는 한 플레이트에 고온 또는 저온, 한 종류의 유체만이 흐르고 있다. 채널 내부를 흐르는 유체의 수직 방향으로는 다른 종류의 유체가 존재하지만, 수평 방향으로는 같은 종류의 유체가 존재한다. 그로 인해 수평 방향의 열전달률은 수직 방향에 비하여 낮게 나타나게 된다. 열교환기 성능 향상을 위하여 한 플레이트에서 고온, 저온 유동이 번갈아가며 존재하는 새로운 채널 배열을 제안하였다. 새로운 채널 배열을 위해서는 특별한 입구 및 출구 설계가 필요하다. 제안된 채널 배열을 통하여 기존 열교환기보다 높은 열전달률을 얻을 수 있다. Reynolds 수와 Prandtl수가 증가할수록 새로운 채널 배열로 인한 열 성능 향상이 증가하고, 고체와 유체의 열전도계수 비가 증가할수록 열 성능 향상은 감소한다.