• 제목/요약/키워드: Microchannel

검색결과 393건 처리시간 0.027초

사각 마이크로채널 내의 2 상유동 압력강하와 유동양식에 대한 젖음성의 영향에 대한 연구 (Study of Wettability Effect on Pressure Drop and Flow Pattern of Two-Phase Flow in Rectangular Microchannel)

  • 최치웅;유동인;김무환
    • 대한기계학회논문집B
    • /
    • 제33권12호
    • /
    • pp.939-946
    • /
    • 2009
  • Wettability is a critical parameter in micro-scale two-phase system. Several previous results indicate that wettability has influential affect on two-phase flow pattern in a microchannel. However, previous studies conducted using circular microtube, which was made by conventional fabrication techniques. Although most applications for micro thermal hydraulic system has used a rectangular microchannel, data for the rectangular microchannel is totally lack. In this study, a hydrophilic rectangular microchannel was fabricated using a photosensitive glass. And a hydrophobic rectangular microchannel was prepared using silanization of glass surfaces with OTS (octa-dethyl-trichloro-siliane). Experiments of two-phase flow in the hydrophilic and the hydrophobic rectangular microchannels were conducted using water and nitrogen gas. Visualization of twophase flow pattern was carried out using a high-speed camera and a long distance microscope. Visualization results show that the wettability was important for two-phase flow pattern in rectangular microchannel. In addition, two-phase frictional pressure drop was highly related with flow patterns. Finally, Two-phase frictional pressure drop was analyzed with flow patterns.

수치 해석을 이용한 단일 마이크로채널의 단면 가열 조건의 열전달 특성에 관한 연구 (Investigation of Heat Transfer in Microchannel with One-Side Heating Condition Using Numerical Analysis)

  • 최치웅;허철;김동억;김무환
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.986-993
    • /
    • 2007
  • The microchannel heat sink is promising heat dissipation method far high density electronic devices. The cross-sectional shape of MEMS based microchannel heat sink is limited to triangular, trapezoidal, and rectangular due to their fabrication method. And heat is added to one side surface of heat source. Therefore, those specific conditions make some complexity of heat transfer in microchannel heat sink. Though many previous research of conjugate heat transfer in microchannel was conducted, most of them did not consider heat loss. In this study, numerical investigation of conjugate heat transfer in rectangular microchannel was conducted. The method of heat loss evaluation was verified numerically. Heat distribution was different for each wall of rectangular microchannel due to thermal conductivity and distance from heat source. However, the ratio of heat from each channel wall was correlated. Therefore, the effective area correction factor could be proposed to evaluate accurate heat flux in one side heating condition.

외부전압 및 너비 변화에 따른 마이크로채널의 유체 속도 변화 (Effects of External Voltages and Widths on Fluid Velocity in Microchannel)

  • 김진용;이효송;김정수;이영우
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.238-242
    • /
    • 2005
  • 본 연구에서 soft lithographic mothed 기술을 사용하여 마이크로채널을 만들기 위해 polydimethylsiloxane (PDMS)와 SU-8 감광제를 사용하였다. 외부전압과 채널너비에 대한 영향을 조사하기 위하여 마이크로채널의 너비를 $100{\mu}m,\;200{\mu}m,\;300{\mu}m$로 제작하였으며, 각각의 마이크로채널에 외부전압을 걸어 유체의 속도를 측정하였다. 그 결과 동일한 너비를 갖는 마이크로채널에 외부전압을 변화시켰을 때, 외부전압이 증가할수록 유체의 속도가 증가하였다. 이는 외부전압이 증가할수록 계면에서의 전기이중층이 압축되어 제타전위의 값이 증가하기 때문인 것으로 해석된다. 또한, 동일한 외부전압에서 마이크로채널의 너비가 증가할수록 유체의 속도가 증가하는 것으로 나타났다. 이는 채널 너비의 증가가 내부의 저항을 감소시켜 유체의 속도가 보다 빠르게 나타나는 것으로 판단된다.

나노유체를 냉각유체로 사용하는 마이크로채널 히트 싱크의 냉각효율 (Cooling Performance of a Microchannel Heat Sink with Nanofluids)

  • 장석필
    • 설비공학논문집
    • /
    • 제17권9호
    • /
    • pp.849-854
    • /
    • 2005
  • In this paper, the cooling performance of a microchannel heat sink with nano-particle-fluid suspensions ('nanofluids') is numerically investigated. By using theoretical models of thermal conductivity and viscosity of nanofluids that account for the fundamental role of Brownian motion respectively, we investigate the temperature contours and thermal resistance of a microchannel heat sink with nanofluids such as 6nm copper-in-water and 2nm diamond-in-water. The results show that a microchannel heat sink with nanofluids has high cooling performance compared with the cooling performance of that with water, the classical coolant. Nanofluids reduce both the thermal resistance and the temperature difference between the heated microchannel wall and the coolant.

비균일계 마이크로채널에서의 유량 변화 특성 (Variation of Flow Rates in Heterogeneous Microchannel Systems)

  • 김진용;이효송;유재근;김기호;이영우
    • 공업화학
    • /
    • 제17권1호
    • /
    • pp.28-32
    • /
    • 2006
  • 본 연구에서는 polydimethylsiloxane (PDMS)와 glass로 이루어진 마이크로채널의 너비와 깊이 및 외부전압에 따른 특성을 알아보기 위하여 각각의 마이크로채널에서의 유량 변화를 조사하였다. PDMS와 SU-8 감광제를 사용하는 soft lithographic method 기술을 사용하여 마이크로채널을 만들었다. 채널의 깊이 $50{\mu}m$$100{\mu}m$에 대하여, 채널의 너비를 $100{\mu}m$, $200{\mu}m$, $300{\mu}m$로 하여 제작하였으며, 각각의 마이크로채널에 0.3 kV, 0.35 kV, 0.4 kV 그리고 0.45 kV의 외부전압을 걸어 유량 변화를 측정하였다. 실험 결과, 동일한 너비를 갖는 마이크로채널에서는 외부전압이 증가함에 따라 유량이 증가하였다. 이는 외부전압이 증가함에 따라 전기장이 증가하기 때문이다. 동일한 외부전압에서 마이크로채널의 너비가 증가할수록 유량이 증가하는 경향이 나타났고, 이는 채널 너비의 증가가 내부의 저항을 감소시키는 효과를 가져온 것으로 사료된다. 또한, 동일하게 단면적을 두 배로 증가시켜 깊이와 너비의 영향을 조사한 결과, 저 전압에서는 깊이의 영향이 크게 나타났으며 고 전압에서는 너비의 영향이 크게 나타났다.

마이크로채널 내의 온도 분포 측정을 위한 미소 측정 구조물의 제작 (Fabrication of a novel micromachined measurement device for temperature distribution measurement in the microchannel)

  • 박호준;임근배;손상영;송인섭;박정호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1921-1923
    • /
    • 2001
  • In this work, an array of resistance temperature detector(RTD) was fabricated inside the microchannel in order to investigate in-situ flow characteristics. A rectangular straight microchannel, integrated with RTD's for temperature sensing and a heat source for generating the temperature gradient along the channel. were fabricated with the dimension of $200{\mu}m(W){\times}{\mu}m(D){\times}$48mm(L), while RTD measured precise temperatures at the inside-channel wall. 4" $525{\pm}25{\mu}m$ thick P-type <100> Si wafer was used as a substrate. For the fabrication of RTDs. 5300$\AA$ thick Pt/Ti layer was sputtered on a Pyrex glass wafer. Finally, glass wafer was bonded with Si wafer by anodic bonding, therefore RTD was located inside the microchannel. The temperature distribution inside the fabricated microchannel was obtained from 4 point probe measurements and Dl water is used as a working fluid. Temperature distribution inside the microchannel was measured as a function of mass flow rate and heat flux. As a result, precise temperatures inside the microchannel could be obtained. In conclusion, this novel temperature distribution measurement system will be very useful to the accurate analysis of the flow characteristics in the microchannel.

  • PDF

전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 수치해석 (A Numerical Analysis on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling)

  • 최미진;권오경;차동안;윤재호;이찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2426-2431
    • /
    • 2007
  • The microchannel waterblock has a good capability in the cooling of electronic devices. The object of this paper is to estiblish the scheme of design for the microchannel waterblock. The effects of flow rate and channel size on the cooling performances are investigated. It was found that the optimum flow rates were ragned from 0.7 lpm to 1.4 lpm. The thermal resistance at 2.0 lpm and 100 W was 0.13 $^{\circ}C$/W. Decrease in the width of channels is more effective for the improvement in the cooling performances of microchannel waterblock than increase in the height of channels. The increase of pressure drop resulted from decrease in the width of channels can be decreased by increasing the hight of channels.

  • PDF

전자기기 냉각용 마이크로채널 워터블록의 냉각성능에 관한 실험적 연구 (An Experimental Study on Cooling Performance of Microchannel Waterblock for Electronic Devices Cooling)

  • 권오경;최미진;차동안;윤재호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2432-2437
    • /
    • 2007
  • The demand of high speed and miniaturization of electronic devices results in increased power dissipation requirement for thermal management. In this work, the effects of microchannel width, height and liquid flowrate on the cooling performances of microchannel waterblock are investigated experimentally. The microchannel waterblock considered ranged in width from 0.5 to 0.9 mm, with the channel height being nominally 1.7 to 9 times the width in each case. The experiments were conducted using water, over a liquid flow rate ranging from 0.2 to 2.0 lpm. The base temperature, thermal resistance and pressure drop increase with increasing of liquid flow rate. The measured thermal resistances ranged from 0.10 to 0.23 $^{\circ}C$/W for the channel 5.

  • PDF

채널 형상에 따른 마이크로채널 판형 열교환기 열전달 성능 향상에 관한 수치 연구 (Numerical Study of Heat Transfer Enhancement on Microchannel Plate Heat Exchanger with Channel Shape)

  • 전승원;김윤호;이규정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.1888-1893
    • /
    • 2007
  • In this study, the microchannel plated heat exchanger were numerically studied for the enhancement of heat transfer in the channel configuration. Unit cold and hot fluid region with the microchannel were modeled and periodic boundary condition at the side wall was applied to continuously repeating geometry. The material of micro-structured plate is STS304 and working fluid is water. Triangular obstacles were placed in micro channel to enhance heat transfer. The performance of microchannel plated heat exchangers were numerically investigated with various obstacle configuration and Reynolds number under the parallel and counter flows. Heat transfer rate has increased about 18% compared with straight channel, but pressure drop also increased about 3.5 times. The main factor of increasing of pressure drop and heat transfer rate is considered that the momentum was lost to collide against obstacles, generation of secondary flow and boundary layer separation, wake and vortex forming phenomena.

  • PDF

등온 경계 조건을 가지는 마이크로채널 히트 싱크의 열성능 해석을 위한 평균 접근법 (Averaging Approach for Microchannel Heat Sinks Subjected to the Uniform Wall Temperature Condition)

  • 김동권;김성진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1247-1252
    • /
    • 2004
  • The present paper is devoted to the modeling method based on an averaging approach for thermal analysis of microchannel heat sinks subjected to the uniform wall temperature condition. Solutions for velocity and temperature distributions are presented using the averaging approach. When the aspect ratio of the microchannel is higher than 1, these solutions accurately evaluate thermal resistances of heat sinks. Asymptotic solutions for velocity and temperature distributions at the high-aspect-ratio limit are alsopresented by using the scale analysis. Asymptotic solutions are simple, but shown to predict thermal resistances accurately when the aspect ratio is higher than 10. The effects of the aspect ratio and the porosity on the friction factor and the Nusselt number are presented. Characteristics of the thermal resistance of microchannel heat sinks are also discussed.

  • PDF