• Title/Summary/Keyword: Microcapsule synthesis

Search Result 7, Processing Time 0.022 seconds

Study of Dye Encapsulated Microcapsule Polymerization Using Polyurethane Prepolymer Synthesis and Textile Finishing (폴리우레탄 프리폴리머 합성을 통한 색소 담지 마이크로캡슐 제조 및 섬유가공)

  • Kim, Ji Yeon;Woo, Ji Yun;Min, Mun Hong;Yoon, Seok Han;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.27 no.3
    • /
    • pp.184-193
    • /
    • 2015
  • In this study, dye encapsulated microcapsules were produced by polyurethane prepolymer synthesis method using hexamethylene diisocyanate, ethylene glycol and methyl ethyl ketone. The study showed that the average size of microcapsules were $4.697{\mu}m$ in normal distribution. These microcapsules were induced red color by thermochromic fluoran red dye with showing color change as temperature. After the textile finishing of microcapsules, durability of microcapsules were checked as crocking times and lightfastness. The microcapsules were pressed at protrusion of textile weave in 10 crocking times which meant that the microcapsules not fallen off. Lightfastness was acceptable giving rating 4. It means that the polyurethane microcapsules not affect to light durability.

A Study on Remaining Formaldehyde Concentration in the Synthesis of Self-Healing Microcapsules (자기치유성 마이크로캡슐 합성 공정에서의 포름알데히드 잔류량 연구)

  • Kim, Dong-Min;Lee, Jun-Seo;Ryu, Byung-Cheol;Chung, Chan-Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.129-133
    • /
    • 2020
  • The concentration of remaining formaldehyde contained in waste liquid emitted from the process of urea-formaldehyde microcapsule synthesis was analyzed by gas chromatography-mass spectrometry (GC-MS). Three factors that can affect on the reaction of formaldehyde were selected including pH, ammonium chloride input and temperature. The effect of these factors on the concentration of remaining formaldehyde was studied. When ammonium chloride input was 0.025g, microcapsules could not be obtained or core substance leaked out because of weak shell, and therefore this reaction condition would be inadequate. It was confirmed that the concentration of remaining formaldehyde could be minimized when the microencapsulation was conducted at 70℃ and pH 2.5 by using a ammonium chloride input of 0.050g. This study can make contribution to UF microencapsulation in safer working environment.

Synthesis of Microaglae-Capturing Magnetic Microcapsule Using CaCO3 Microparticles and Layer-by-Layer Coating

  • Lee, Young-Hee;Seo, Jung-Cheol;Oh, You-Kwan;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.376-380
    • /
    • 2018
  • Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on $Fe_3O_4$ nanoparticle-embedded $CaCO_3$ microparticles followed by removing $CaCO_3$ sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.

Fabrication of Mesoporous Hollow TiO2 Microcapsules for Application as a DNA Separator

  • Jeon, Sang Gweon;Yang, Jin Young;Park, Keun Woo;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3583-3589
    • /
    • 2014
  • This study evaluated a simple and useful route to the synthesis of mesoporous $TiO_2$ microcapsules with a hollow macro-core structure. A hydrophilic precursor sol containing the surfactants in the hydrophobic solvents was deposited on PMMA polymer surfaces modified by non-thermal plasma to produce mesoporous shells after calcination. The surface of the PMMA polymer spheres was coated with $NH_4F$ and CTAB to control the interfacial properties and promote the subsequent deposition of inorganic sols. These hollow type mesoporous $TiO_2$ microcapsules could be applied as an efficient substrate for the immobilization of DNA oligonucleotides.

Synthesis and Application of cPSMA-PSMA Microcapsule Absorbent for Cement Mortars (시멘트 모르타르용 cPSMA-PSMA 마이크로캡슐 흡수제 제조 및 적용)

  • Hwang, Ki-Seob;Jang, Seok-Soo;Jung, Yong-Wook;Lee, Seung-Han;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.216-222
    • /
    • 2012
  • We synthesized microcapsule absorbent with crosslinked poly(styrene-$alt$-maleic anhydride) (PSMA) as a core and PSMA as a shell by a precipitation polymerization method for the delayed absorption of excess water in cement mortar. cPSMA-PSMAs with core-shell structure were synthesized with ratios of 1/1, 1/2 and 1/3 as core monomer mass to shell monomer mass to control shell thickness. We observed the hydrolysis of PSMA in cement-saturated aqueous solution by a FTIR spectrometer. We observed good core-shell structure microcapsules for 1/2(cPSMA #3), but observed incomplete core-shell structure for 1/1(cPSMA #2) and 1/3(cPSMA #4) of core/shell monomer ratios. The swelling ratio of cPSMA #3 in cement-saturated aqueous solution was increased until 20 min. After that it was decreased until 2 hrs swelling time, and they started to increase again. The viscosities of cement paste with cPSMA #3 microcapsules were very slowly increased until 1 hr and increased fast after 1.5 hrs. Cement mortar with 0.5 wt% cPSMA #1 having only core part showed about 5% increase in compressive strength compared to that of plain cement mortar. cPSMA #3 added cement mortar showed the highest compressive strength with 7% increase.

Fabrication of Polymeric Microcapsules in a Microchannel using Formation of Double Emulsion (마이크로채널 내 이중유화 액적 형성을 통한 마이크로캡슐 제조)

  • Nam, Jin-Oh;Choi, Chang-Hyung;Kim, Jongmin;Kang, Sung-Min;Lee, Chang-Soo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.597-601
    • /
    • 2013
  • In this study, we present simple microfluidic approach for the synthesis of monodisperse microcapsules by using droplet-based system. We generate double emulsion through single step in the microfluidic device having single junction while conventional approaches are limited in surface treatment for the generation of double emulsion. First, we have injected disperse fluid containing FC-77 oil and photocurable ethoxylated trimethylolpropane triacrylate (ETPTA) and water containing 3 wt% poly(vinyl alcohol) (PVA) as continuous phase into microfluidic device. Under the condition, we easily generate double emulsion with high monodispersity by using flow focusing. The double emulsion droplets are transformed into microcapsules under the UV irradiation via photopolymerization. In addition, we control thickness of double emulsion's shell by controlling flow rate of ETPTA. We also show that the size of double emulsions can be controlled by manipulation of flow rate of continuous phase. Furthermore, we synthesize microcapsules encapsulating various materials for the application of drug delivery systems.