• 제목/요약/키워드: Microbial solubilization

Search Result 34, Processing Time 0.025 seconds

Effect of Sludge Concentration on Removal of Heavy Metals from Digested Sludge by Thiobacillus ferrooxidans (Thiobacillus ferrooxidans를 이용한 소화 슬러지의 중금속 제거에 미치는 슬러지 농도의 영향)

  • 류희욱;김윤정;조경숙;강근석;최형민
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.279-283
    • /
    • 1998
  • To investigate the feasibility of the microbial process for removal of heavy metals from the high solid content sludge, the effect of sludge concentration on the solubilization of heavy metals by an iron oxidizing bacterium Thiolbacillus ferrooxidans was examined. With increasing the sludge concentration, the removal efficiency of heavy metals and the oxidation rate of iron were inhibited. Especially, when the sludge concentration is over 5% (w/v), the activity of T. ferrooxidans was remarkably inhibited. This inhibition is considered to occur due to the dissolved inhibitory materials such as organic compounds, heavy metals, and others which were extracted from the sludge during incubation period. In conclusion, the microbial process by T. ferrooxidans is only effectively used in ranges of 1.3 to 4.0% (w/v) sludge concentration.

  • PDF

Inorganic Phosphate Solubilization by Immobilized Pantoea agglomerans under in vitro Conditions (고정화된 Pantoea agglomerans에 의한 난용성 인산의 가용화)

  • Kim, Eun-Hee;Park, Sung-Ae;Park, Myoung-Su;Yang, Jin-chul;Madhaiyan, Munusamy;Seshadri, Sundaram;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • It is now widely accepted that immobilized microbial cells can overcome some of the problems associated with microbial survival stability, efficacy, storage, transportation and ease of application in agricultural environments. Pantoea agglomerans, a phosphate solubilizing bacterium, was immobilized in alginate, agar and gelatin carriers. All the three immobilfized carriers with bacterial cells of P. agglomerans were compared for solubilization of tricalcium phosphate in pure liquid cultures. While alginate beads were tested for phosphate solubilization on alternate days up to five days, agar beads and gelatin cubes were subjected for one time phosphate solubilization analysis after seven days. Both alginate and agar immobilized cells of P. agglomerans exhibited higher efficiency in increasing the solubilizaliun of tricalcium phosphate than gelatin immobilized cells. The culture filtrate of alginate bead inoculation treatment registered a rapid increase in soluble phosphate concentration upon incubation. A corresponding decrease in the pH of the medium was also observed in all the treatments.

Sludge Reduction by Mechanical Solubilization in the Aerobic Digestion (호기성소화에서 가용화가 슬러지 감량화에 미치는 영향)

  • Youn, Sang Hyun;Jang, Hyun-sup;Hwang, Sun-jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.5
    • /
    • pp.763-770
    • /
    • 2006
  • The purpose of this study was to investigate the effects of mechanical(ball-mill) solubilization of excess sludge especially focused on the TSS(total suspended solid) reduction during the conventional aerobic digestion of sewage sludges including primary and/or excess sludge, HRT was examined at the 10 days and 20 days. According to the results of this study, TSS removal efficiency of solubilized excess sludge was almost two times higher than that of non-solubilized excess sludge. And as the proportion of the primary sludge increased, TSS removal efficiency became worse because primary sludge rarely contained microbial cells which could be easily solubilized physically. It was also proved that by the application of proper solubilization techniques to the excess sludge, HRT for the aerobic digestion could be lessened(above 50%) dramatically keeping the same or better digestion performance. The fact that between primary and excess sludges, only the excess sludge is quite effective in the sludge solubilization and in it's reduction says that excess sludge releasing sources are key-point in the sludge cake reduction field as a source control.

Chaperone Assisted Overexpression of D-carbamoylase Independent of the Redox State of Host Cytoplasm

  • Sareen, Dipti;Sharma, Rakesh;Vohra, Rakesh M.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.62-72
    • /
    • 2001
  • The N-carbamoyl-D-amino acid amidohydrolase (D-carbamoylase) gene (dcb) from Agrobacterium tumefaciens AM 10 has been successfully cloned and expressed in Escherichia coli. Expression of D-carbamoylase gene under the 17 promoter in different host strains showed that the optimal expression was achieved in E. coli JM109 (DE3) with a 9-fold increase in enzyme production compared to the wild-type strain. The co-expression of the GroEL/ES protein with D-carbamoylase protein caused an in vivo solubilization of D-carbamoylase in an active form. The synergistic effect of GroEL/ES at 28$^{\circ}C$ led to 60 % solubilization of the total expressed target protein with a 6.2-fold increase in enzyme activity in comparison to that expressed without GroEL/ES and 43-fold increase in enzyme activity compared to A. tumefaciens AM 10. Attempts to express D-carbamoylase in an altered redox cytoplasmic milieu did not improve the enzyme production in an active form. The Histidyl-tagged D-carbamoylase was purified in a single step by Nickel-affinity chromatography and was found to have a specific activity of 9.5 U/mg protein.

  • PDF

Ethanol Production from Artificial Domestic Household Waste Solubilized by Steam Explosion

  • Nakamura, Yoshitoshi;Sawada, Tatsuro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.3
    • /
    • pp.205-209
    • /
    • 2003
  • Solubilization of domestic household waste through Steam explosion with Subsequent ethanol production by the microbial saccharifitation and fermentation of the exploded product was studied. The effects of steam explosion on the changes of the density, viscosity, pH, and amounts of extractive components in artificial household waste were determined. The composition of artificial waste used was similar to leftover waste discharged from a typical home in Japan. Consecutive microbial saccharification and fermentation, and simultaneous microbial saccharification and fermentation of the Steam-exploded product were attempted using Aspergillus awamori, Trichoderma viride, and Saccharomyces cerevisiae; the ethanol yields of each process were compared. The highest ethanol yield was obtained with simultaneous microbial saccharification and fermentation of exploded product at a steam pressure of 2 MPa and a steaming time of 3 min.

An Investigation of the Solubilization of Primary Sewage Sludge using Lactic Acid Bacteria Cultured in a Glucose and Yeast Extract Medium (Glucose와 Yeast Extract를 이용하여 배양된 유산균을 이용한 하수 일차 슬러지의 가용화)

  • Lee, Sang Min;Choi, Han Na;Shin, Jung Hun;Lee, Eun Young
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.4
    • /
    • pp.424-429
    • /
    • 2012
  • The intention of this research was to investigate the solubilization of primary sewage sludge using lactic acid bacteria cultured in a glucose and yeast extract medium. Glucose as the carbon source and yeast extract as the source of nitrogen were chosen as an economic medium with the potential for the mass production of lactic acid bacteria. The optimal concentrations of the medium were 3% (w/v) glucose and 2% (w/v) yeast extract. In this study, in order to improve field applications for the solubilization of sludge at sewage treatment plants, a powdered form of lactic acid bacteria was produced. The optimal inoculum of the powder for the maximum efficiency of solubilization was 1% (w/v). In that condition, the SCOD value increased from 8600 (mg/L) at the beginning of experiment to 10290 (mg/L) at 96 h, with the highest solubilization rate (20.6% DDCOD) and 11.2% (SCOD). Also, the TVFAs of the lactic acid bacteria inoculation group were produced more than that of the control group. In particular, acetic acid was produced 5 times more in the experimental group than in the control group. In this research, the potential of lactic acid bacteria in the pretreatment of primary sewage sludge as a solubilizer, and as an energy source producer for microbial fuel cells was revealed.

Biosynthesis of polyhydroxyalkanoate by mixed microbial cultures from hydrolysate of waste activated sludge (혼합미생물배양체를 이용한 폐활성슬러지 가용화 산물로부터 polyhydroxyalkanoate 생합성)

  • Park, Taejun;Yoo, Young Jae;Jung, Dong Hoon;Lee, Sun Hee;Rhee, Young Ha
    • Korean Journal of Microbiology
    • /
    • v.53 no.3
    • /
    • pp.200-207
    • /
    • 2017
  • A new approach to the solubilization of waste activated sludge (WAS) using alginate-quaternary ammonium complex beads was investigated under controlled mild alkaline conditions. The complex beads were prepared by the reaction of sodium alginate (SA) with 3-(trimethoxysilyl)propyl-octadecyldimethylammonium chloride (TSA) in acid solution, followed by crosslinking with $CaCl_2$. Treatment of WAS with SA-TSA complex beads was effective for enhancing the efficacy of WAS solubilization. The highest value of soluble chemical oxygen demand (SCOD) concentration (3,900 mg/L) was achieved after 10 days of treatment with 30% (v/v) SA-TSA complex beads. The WAS solubilization efficacy of the complex beads was also evaluated by estimating the concentrations of volatile fatty acids (VFAs). The maximum value of VFAs was 2,961 mg/L, and the overall proportions of VFAs were more than 75% of SCOD. The main components of VFAs were acetic, propionic, iso-butyric, and butyric acids. These results suggest that SA-TSA complex beads might be useful for enhancing the solubilization of WAS. The potential use of VFAs as the external carbon substrate for the production of polyhydroxyalkanoate (PHA) by a mixed microbial culture (MMC) was also examined. The enrichment of PHA-accumulating MMC could be achieved by periodic feeding of VFAs generated from WAS in a sequencing batch reactor. The composition of PHA synthesized from VFAs mainly consisted of 3-hydroxybutyrate. The maximum PHA content accounted for 25.9% of dry cell weight. PHA production by this process is considered to be promising since it has a doubly beneficial effect on the environment by reducing the amount of WAS and concomitantly producing an eco-friendly biopolymer.

Biochemical and cultural characteristics of mineral-solubilizing Acinetobacter sp. DDP346 (미네랄 가용화능을 갖는 Acinetobacter sp. DDP346의 생화학적 및 배양학적 특성)

  • Kim, Hee Sook;Lee, Song Min;Oh, Ka-Yoon;Kim, Ji-Youn;Lee, Kwang Hui;Lee, Sang-Hyeon;Jang, Jeong Su
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.4
    • /
    • pp.333-341
    • /
    • 2021
  • In this study, to select strains suitable as microbial agent from among rhizosphere microorganisms present in rhizosphere soil and roots, the mineral solubilization ability, antifungal activity against 10 types of plant pathogenic fungi, and plant growth-promoting activity of rhizosphere microorganisms were evaluated. As a result, DDP346 was selected because it has solubilization ability of phosphoric acid, calcium carbonate, silicon, and zinc; nitrogen fixing ability; production ability of siderophore, indole-3-acetic acid, and aminocyclopropane-1-carboxylate deaminase; and antifungal activity against seven types of plant pathogenic fungi. DDP346 showed a 99.9% homology with Acinetobacter pittii DSM 21653 (NR_117621.1); phylogenetic analysis also revealed a close relationship with Acinetobacter pittii based on the 16S rRNA base sequence. The growth conditions of DDP346 were identified as temperatures in the range of 10-40 ℃, pH in the range of 5-11, and salt concentrations in the range of 0-5%. In addition, a negative correlation coefficient (r2 = -0.913, p <0.01) was shown between pH change and the solubilized phosphoric acid content of Acinetobacter sp. DDP346, and this is assumed to be due to the organic acid generated during culture. Consequently, through the evaluation of its mineral solubilization ability, antifungal activity against plant pathogenic fungi, and plant growth-promoting activity, the potential for the utilization of Acinetobacter sp. DDP346 as a multi-purpose microbial agent is presented.

Plant Growth Promotion in Soil by Some Inoculated Microorganisms

  • Jeon, Jong-Soo;Lee, Sang-Soo;Kim, Hyoun-Young;Ahn, Tae-Seok;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.271-276
    • /
    • 2003
  • The inoculation of some microorganisms into a microcosm containing soil from a barren lakeside area at Lake Paro in Kangwon-do enhanced plant growth significantly. The direct and viable counts of soil bacteria and soil microbial activities measured by electron transport system assay and fluorescein diacetate hydrolysis assay were higher in inoculated soil. The plant growth promoting effect of this inoculation may be caused by phytohormone production and the solubilization of insoluble phosphates by the inoculated bacteria. Three inoculated strains of Pseudomonas fluorescens produced several plant growth promoting phytohormones, including indole-3-acetic acid (auxin), which was confirmed by thin layer chromatography and GC/MS. P. fluorescens strain B16 and M45 produced 502.4 and 206.1 mg/l of soluble phosphate from Ca3(PO4)2 and hydroxyapatite, respectively. Bacillus megaterium showed similar solubilization rates of insoluble phosphates to those of Pseudomonas spp. We believe that this plant growth promoting capability may be used for the rapid revegetation of barren or disturbed land.

Microbial Conversion of Cholesterol to 4-Androstene-3,17-dione by Intermittent Addition of Substrate (간헐적으로 첨가된 Cholesterol로부터 미생물전환에 의한 4-Androstene-3,17-dione의 생산)

  • Choi, S.K.;Kim, H.S.;Park, Y.H.
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.3
    • /
    • pp.187-192
    • /
    • 1988
  • Production of 4-androstene-3,17-dione(AD) from cholesterol by microbial conversion was investigated. To facilitate the solubilization of cholesterol in the fermentation broth, ethanol was used as an organic solvent. Inhibition on cell growth by ethanol was observed to be negligible upto 2% (V/V) concentration. Microbial conversion was successfully carried out with high yield when the cholesterol was added at early logarithmic growth phase with pH control at 7.0. In order to improve the process productivity, bioconversion was conducted at various mode of cholesterol addition ; 0.1% (V/W) of cholesterol was found to be most appropriate for solubilization in ethanol and was added intermittently. When added three time(total 3 g/$\ell$), overall bioconversion yield reached upto 65% while single addition of same amount of cholesterol (3 g/$\ell$) yielded about 40% conversion.

  • PDF