• Title/Summary/Keyword: Microbial resource

Search Result 191, Processing Time 0.027 seconds

Microbial Biodegradation and Toxicity of Vinclozolin and its Toxic Metabolite 3,5-Dichloroaniline

  • Lee, Jung-Bok;Sohn, Ho-Yong;Shin, Kee-Sun;Kim, Jong-Sik;Jo, Min-Sub;Jeon, Chun-Pyo;Jang, Jong-Ok;Kim, Jang-Eok;Kwon, Gi-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.343-349
    • /
    • 2008
  • Vinclozolin, an endocrine disrupting chemical, is a chlorinated fungicide widely used to control fungal diseases. However, its metabolite 3,5-dichloroaniline is more toxic and persistent than the parent vinclozolin. For the biodegradation of vinclozolin, vinclozolin- and/or 3,5-dichloroaniline-degrading bacteria were isolated from pesticide-polluted agriculture soil. Among the isolated bacteria, a Rhodococcus sp. was identified from a 16S rDNA sequence analysis and named Rhodococcus sp. T1-1. The degradation ratios for vinclozolin or 3,5-dichloroaniline in a minimal medium containing vinclozolin $(200{\mu}ml)$ or 3,5-dichloroaniline $(120{\mu}g/ml)$ were 90% and 84.1%, respectively. Moreover, Rhodococcus sp. T1-1 also showed an effective capability to biodegrade dichloroaniline isomers on enrichment cultures in which they were contained. Therefore, these results suggest that Rhodococcus sp. T1-1 can bioremediate vinclozolin as well as 3,5-dichloroaniline.

In-Depth Characterization of Wastewater Bacterial Community in Response to Algal Growth Using Pyrosequencing

  • Lee, Jangho;Lee, Juyoun;Lee, Tae Kwon;Woo, Sung-Geun;Baek, Gyu Seok;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1472-1477
    • /
    • 2013
  • Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment.

Status and Future Prospects of Pest Control Agents in Environmentally-friendly Agriculture, and Importance of their Commercialization (친환경농업 해충방제용 제제의 현황과 전망, 그리고 산업화의 중요성)

  • Kim, In-Seon;Kim, Ik-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.301-309
    • /
    • 2009
  • The use of bioactive materials derived from microorganisms and plants has played a role in pest management in environmentally-friendly agriculture (EFA) system. In Korea, a number of agricultural agents for the control of insect pests have been registered officially as biopesticides and marketed widely. However, most of the biopesticides has a limitation in the resource availability of bioactive materials, which has been one of main problems related to the commercialization of agricultural agents. Plant materials and microbial metabolites are the best sources as starting components to commercialize natural-occurring agricultural agents for pest management. The lack of modernized system for the standardization and quality control of the starting materials, however, has also received as a main problem related to the commercialization of agricultural agents. Considered that EFA business has kept growing bigger and bigger with global economic status, the commercialization of agricultural agents is necessary to meet the required number of agricultural agents officially available in EFA. This study describes the status and future prospects of pest control agents in EFA. A number of main issues hindered in the commercialization of agricultural agents are discussed in order to present a promising approach to successful commercialization.

Computational Approaches for Structural and Functional Genomics

  • Brenner, Steven-E.
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.17-20
    • /
    • 2000
  • Structural genomics aims to provide a good experimental structure or computational model of every tractable protein in a complete genome. Underlying this goal is the immense value of protein structure, especially in permitting recognition of distant evolutionary relationships for proteins whose sequence analysis has failed to find any significant homolog. A considerable fraction of the genes in all sequenced genomes have no known function, and structure determination provides a direct means of revealing homology that may be used to infer their putative molecular function. The solved structures will be similarly useful for elucidating the biochemical or biophysical role of proteins that have been previously ascribed only phenotypic functions. More generally, knowledge of an increasingly complete repertoire of protein structures will aid structure prediction methods, improve understanding of protein structure, and ultimately lend insight into molecular interactions and pathways. We use computational methods to select families whose structures cannot be predicted and which are likely to be amenable to experimental characterization. Methods to be employed included modern sequence analysis and clustering algorithms. A critical component is consultation of the presage database for structural genomics, which records the community's experimental work underway and computational predictions. The protein families are ranked according to several criteria including taxonomic diversity and known functional information. Individual proteins, often homologs from hyperthermophiles, are selected from these families as targets for structure determination. The solved structures are examined for structural similarity to other proteins of known structure. Homologous proteins in sequence databases are computationally modeled, to provide a resource of protein structure models complementing the experimentally solved protein structures.

  • PDF

Purification and Characterization of an Indican-hydrolyzing β-glucosidase from Agrobacterium tumefaciens (Agrobacterium tumefaciens 유래 인디칸 분해활성을 갖는 β-glucosidase의 분리와 특성분석)

  • Hwang, Chang-Sun;Lee, Jin-Young;Kim, Geun-Joong
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.341-346
    • /
    • 2012
  • Indican (indoxyl-${\beta}$-D-glucoside) is a colorless natural compound and can be used as a precursor for the production of indigo. This production step only require an enzyme, ${\beta}$-glucosidase, that readily screened from microbial resource by using selective media supplemented with indican as a sole carbon source. Agrobacterium tumefaciens was well grown in this media and thus presumed to produce a related enzyme. The corresponding gene, encoding a protein with a calculated molecular mass of 51 kDa, was cloned and overexpressed as MBP fusion proteins. The purified enzyme was determined to be a dimer and showed the maximum activity for indican at pH 7.0 and $40^{\circ}C$. The kinetic parameters for indican, Km and Vmax, were determined to be 1.4 mM and 373.8 ${\mu}M/min/mg$, respectively. The conversion yield of indican into indigo using this enzyme was about 1.7-1.8 folds higher than that of previously isolated enzyme from Sinorhizobium meliloti. Additionally, this enzyme was able to hydrolyze various ${\beta}$-1,4 glycoside substrates.

VaSpoU1 (SpoU gene) may be involved in organelle rRNA/tRNA modification in Viscum album

  • Ahn, Joon-Woo;Kim, Suk-Weon;Liu, Jang-Ryol;Jeong, Won-Joong
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.289-295
    • /
    • 2011
  • The SpoU family of proteins catalyzes the methylation of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). We characterized a putative tRNA/rRNA methyltransferase, VaSpoU1 of the SpoU family, from Viscum album (mistletoe). VaSpoU1 and other plant SpoU1s exhibit motifs of the SpoU methylase domain that are conserved with bacterial and yeast SpoU methyltransferases. VaSpoU1 transcripts were detected in the leaves and stems of V. album. VaSpoU1-GFP fusion proteins localized to both chloroplasts and mitochondria in Arabidopsis protoplasts. Sequence analysis similarly predicted that the plant SpoU1 proteins would localize to chloroplasts and mitochondria. Interestingly, mitochondrial localization of VaSpoU1 was inhibited by the deletion of a putative N-terminal presequence in Arabidopsis protoplasts. Therefore, VaSpoU1 may be involved in tRNA and/or rRNA methylation in both chloroplasts and mitochondria.

Changes in Physical, Chemical, and Biological Traits During Composting of Spent Coffee Grounds (커피찌꺼기 퇴비화 과정의 물리, 화학 및 생물학적 변화)

  • Shin, Ji-Hwan;Park, Seung-Hye;Kim, A-Leum;Son, Yi-hun;Joo, Se-hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.178-187
    • /
    • 2020
  • BACKGROUND: Spent coffee grounds are the most valuable resource for agriculture and industry. However, it is almost thrown untreated into landfills or incineration. Composting is an efficient process for converting spent coffee to fertilizer. METHODS AND RESULTS: Composting was conducted in the compost pile (40 ㎥) equipped with a forced aeration system. Physical and chemical properties containing temperature, pH, electrical conductivity, and moisture were measured through the composting period. Moreover, biological changes were examined for the composting phase using Illumina Miseq sequencing of the 16S rRNA gene. We found 7-14 phyla comprising 250-716 species from a variety phase of compost. During the composting period, Firmicutes were dominated, followed by Actinobacteria and Proteobacteria. CONCLUSION: The result indicated that the use of spent coffee improved the quality of organic fertilizer and changed the microbial communities, unique to the thermal composting stage, which could enhance the composting process. These findings suggest that spent coffee composted material can provide a significant amount of nutrients, thereby supporting plant growth.

Isolation and Characterization of the Plant Growth Promoting Rhizobacterium, Arthrobacter scleromae SYE-3 on the Yam Growth (식물성장촉진근권미생물 Arthrobacter scleromae SYE-3의 분리 및 Yam (Dioscorea japonica Thunb.) 성장에 미치는 영향 연구)

  • Hong, Sun Hwa;Kim, Ji Seul;Sim, Jun Gyu;Lee, Eun Young
    • KSBB Journal
    • /
    • v.31 no.1
    • /
    • pp.58-65
    • /
    • 2016
  • In this study, Arthrobacter scleromae SYE-3, which was isolated from indigenous plant in a subtropical region, Neigeria, with plant growth promoting activity was evaluated to determine the optimal culture condition. A bacterial strain SYE-3 had the IAA productivity ($89.15{\pm}0.36mg/L$) and ACC deaminase activity ($0.20{\pm}0.06$ at 72 hours). Also, optimal culture conditions such as temperature and pH of strain SYE-3 were $20^{\circ}C$ and 10 in LB medium, respectively. Strain SYE-3 had up to 3% salt tolerance in the LB medium. Plant growth promoting ability of strain SYE-3 using yam (Dioscorea japonica Thunb.) was evaluated. As a result, strain SYE-3 had showed very powerful effect on the increase of the shoot length and root biomass of yam (190.0% and 282.41% increase for 112 days, respectively). These results indicated that Arthrobacter scleromae SYE-3 can serve as a promising microbial resource for the biofertilizers of subtropical crops.

Isolation of Bacillus sp. SHL-3 from the Dry Soil and Evaluation of Plant Growth Promoting Ability

  • Hong, Sun Hwa;Kim, Ji Seul;Sim, Jun Gyu;Lee, Eun Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.36-43
    • /
    • 2015
  • Excess use of chemical fertilizer causes soil acidification and accumulation of salt, and thus might bring to desertification of soil. To overcome this problem, it needs limited usage of chemical fertilizer and increased usage of natural fertilizer as an alternative. In this study, dry soil-borne Bacillus sp. SHL-3, which was isolated from arid and barren soil, with plant growth promoting activity was isolated for identification and to determine optimal culture condition. A bacterial strain SHL-3 had the IAA productivity ($5.16{\pm}0.10mg\;L^{-1}$), ACC deaminase activity ($0.36{\pm}0.09$ at 51 hours) and siderophore synthesis. It was identified as genus Bacillus sp.. Also, optimal culture condition of SHL-3 were $20^{\circ}C$ and pH 7 in LB medium. Bacillus sp. SHL-3 had up to 4% salt tolerance in the medium. We evaluated the plant growth promotion ability of SHL-3 using yam (Dioscorea japonica Thunb.). As a result, Bacillus sp. SHL-3 was effective on the increase of the shoot length (202.4% increase for 91 days). These results indicate that Bacillus sp. SHL-3 can serve as a promising microbial resource for the biofertilizers of soil.

Sea cucumber as a therapeutic aquatic resource for human health

  • Siddiqui, Ruqaiyyah;Boghossian, Anania;Khan, Naveed Ahmed
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.251-263
    • /
    • 2022
  • Sea cucumbers are worm-like, leathery bodied, benthic, marine organisms with a branched gonad. There are over 900 species, and these organisms are capable of changing their mechanical state, regenerating their small appendages, and digestive tract. Additionally, sea cucumbers possess both commercial and therapeutical value. Furthermore, it is thought that the metabolites these organisms possess may give rise to their therapeutical value. The use of sea cucumbers in therapy can be traced back to the Ming dynasty, where they were eaten for their tonic properties against constipation, hypertension, and rheumatism. A plethora of studies have been conducted, whereby different metabolites were extracted from sea cucumbers and tested for different therapeutic properties. Herein, we review and discuss the anti-cancer, anti-microbial, anti-coagulant, anti-diabetic, antioxidant, and anti-inflammatory properties of the sea cucumber by assessing literature on PubMed and Google Scholar. Furthermore, the genome and epigenome of these remarkable species is discussed. With the immense data supporting the therapeutic properties of sea cucumbers, further studies are warranted, in order to develop novel and innovative therapeutic compounds for the benefit of human health from these fascinating marine organisms.