• 제목/요약/키워드: Microbial protein

검색결과 877건 처리시간 0.028초

Effects of Whole Crop Corn Ensiled With Cage Layer Manure on Nutritional Quality and Microbial Protein Synthesis in Sheep

  • Kim, S.C.;Kim, J.H.;Kim, C.H.;Lee, J.C.;Ko, Y.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권11호
    • /
    • pp.1548-1553
    • /
    • 2000
  • An experiment was conducted to study the nutritional quality of whole crop corn silage ensiled with cage layer manure in sheep. Treatments were designed as a $3{\times}3$ Latin square with 16-day periods. Sheep were allotted in one of three diet-treatments, which were whole crop corn silage (CS), whole crop corn+30% cage layer manure (CLM) silage (based on DM; MS) and rice straw+concentrate (SC) mixed at 8:2 ratio (on DM basis). Silage ensiled with CLM significantly increased (p<0.05) digestibilities of crude protein, NDF and ADF, TDN over the other treatments. Ruminal pH in sheep fed SC was significantly (p<0.05) higher than that of the other diets at 0.5, 1, 2, 4 and 8 h after feeding. Ruminal ammonia nitrogen concentration of the MS treatment was significantly (p<0.05) higher than that of the other treatments at 0, 1, 2 h after feeding. The MS treatment highly increased (p<0.05) feed intake, digestibility of organic matter and crude protein, nitrogen intake and retained nitrogen. The MS treatment highly increased (p<0.05) purine derivative (PD) excretion leading to higher microbial protein synthesis.

Cloning, Expression, and Renaturation Studies of Reteplase

  • Zhao, Youchun;Ge, Wang;Kong, Young;Zhang, Changkai
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.989-992
    • /
    • 2003
  • Recombinant human tissue plasminogen activator deletion mutein (Reteplase) is a clinically promising thrombolytic drug. Reteplase cDNA was subcloned into a bacteria expression system, and the resultant recombinant was biologically characterized. The Reteplase was expressed in Escherichia coli as an inclusion body, and the downstream processes of the Reteplase inclusion body included denaturation, renaturation, and purification. A protein disulfide isomerase (PDI) was used to assist the refolding of Reteplase, and it was found to increase the refolding rate from less than 2% to more than 20%. The refolded Reteplase was purified through two chromatography steps, including lysine-coupled agarose affinity chromatography and then CM-sepharose cation-exchange chomatography. The purity of r-PA was analyzed by Western bolt analysis, and N-terminal amino acid and amino acid composition analyses confirmed the end-product. Reteplase showed higher thrombolytic potency in an animal thrombus model.

한국산(韓國産) 고등(高等) 균류(菌類)의 성분(成分) 연구(硏究)(XXII) - 골목에 따른 표고버섯의 성분(成分) 비교(比較) - (Studies on the Constiuents of Higher Fungi of Korea(XXII) - Comparative Studies on the Constituents of Lentinus edodes Grown on Various Woods -)

  • 김하원;강창율;김병각;민홍기
    • 한국균학회지
    • /
    • 제8권1호
    • /
    • pp.21-23
    • /
    • 1980
  • To investigate constituents of Lentinus edodes grown on various, quantitative analyses of ash, crude protein, crude fiber, crude fat, water, nonsoluble nitrogen of the mushrooms were carried out by ordinary methods. The crude fat of the mushroom grown on chestnut tree(1.82%) was greater than that grown on oak (0.76%) or alder (1.17%) tree. The crude fiber of the mushroom grown on oak tree (12.50%) was greater than those grown on alder and chestnut trees, 9.85% and 8.52%, respectively. The crude protein, ash, nonsoluble nitrogen and water contents of the mushrooms grown on the three different trees were similar.

  • PDF

The Regulation of LexA on UV-Induced SOS Response in Myxococcus xanthus Based on Transcriptome Analysis

  • Sheng, Duo-hong;Wang, Ye;Wu, Shu-ge;Duan, Rui-qin;Li, Yue-zhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권7호
    • /
    • pp.912-920
    • /
    • 2021
  • SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권8호
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Effects of Synchronization of Carbohydrate and Protein Supply on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

  • Seo, Ja-Kyeom;Yang, Ji-Young;Kim, Hyun-J.;Upadhaya, Santi Devi;Cho, W.M.;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권11호
    • /
    • pp.1455-1461
    • /
    • 2010
  • Three rumen-cannulated Holstein steers were fed three diets, each with a different synchrony index (SI) (LS: 0.77, MS: 0.81, and HS: 0.83), in order to examine the effect of diet on rumen fermentation, nitrogen balance, and microbial protein synthesis. Synchrony index was calculated based on the carbohydrate and crude protein fractions of each ingredient and their degradation rates. Feeding the steers diets with different SIs did not influence dry matter, crude protein, NDF, or ADF digestibility. The concentrations of total and individual VFA in the rumens of steers that were fed the two higher-SI diets were higher than in those fed the low-SI diet (p<0.05), but there was no significant difference between the two higher-SI diets. One hour after feeding, steers on the LS diet had lower ruminal pHs than did those fed the MS or HS diets (p<0.05), and animals on the LS diet generally showed higher ruminal $NH_3$-N levels than did animals on the other diets, with the 4-h post-feeding difference being significant (p<0.05). Steers receiving the LS diet excreted more nitrogen (N) in their urine than did those on the two higher-SI diets (p<0.05), and the total N excretion of those on the LS diet was also higher (p<0.05). Microbial N levels calculated from the concentration of urinary purine derivatives were generally higher when the SI was higher, with the highest microbial protein synthesis being produced by steers on the HS diet (p<0.05). In conclusion, in the current study, ingestion of a synchronous diet by Holstein steers improved microbial protein synthesis and VFA production and decreased total N output.

Can cactus (Opuntia stricta [Haw.] Haw) cladodes plus urea replace wheat bran in steers' diet?

  • da Conceicao, Maria Gabriela;de Andrade Ferreira, Marcelo;de Lima Silva, Janaina;Costa, Cleber Thiago Ferreira;Chagas, Juana Catarina Cariri;de Figueiredo Monteiro, Carolina Correa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권10호
    • /
    • pp.1627-1634
    • /
    • 2018
  • Objective: The study aimed to evaluate the effect of replacing wheat bran for cactus cladodes plus urea (0%, 25%, 50%, 75%, and 100%) on the intake of nutrients, nitrogen balance, microbial protein synthesis, and rumen fermentation for steers. Methods: Five crossbred steers (1/2 Holstein-Zebu), with rumen cannula and an average body weight of $180{\pm}5.3kg$, were assigned to a $5{\times}5$ Latin square design. Dietary treatments consisted of the replacement of the total of wheat bran in basal diet by cactus cladodes using the following proportions: 0% for basal diet, 25%, 50%, 75%, and 100% cactus cladodes replacing wheat bran. Urea was added to the diets to adjust the crude protein (CP) content to 130 g/kg dry matter. Results: Maximum dry matter intake (5.73 kg/d) and maximum nitrogen balance (103 g/d) were estimated for 54.6% and 70.8% replacement levels of wheat bran. The maximum microbial protein production (44.6 g/d) was obtained at a replacement level of 49.7%, and a medium value (125 g CP mic/kg total digestible nutrients) of microbial protein efficiency was observed. The rumen pH increased linearly according to cactus cladodes inclusion, while the ammonia nitrogen medium value was 24.5 mg/dL. Conclusion: The replacement of 55% wheat bran for cactus cladodes plus urea in the diet of crossbred steers is recommended.

Effect of Fish Sarcoplasmic Protein on Quality Attributes of No-fat Chicken Sausages Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제35권2호
    • /
    • pp.225-231
    • /
    • 2015
  • Fish sarcoplasmic protein (SP) obtaining from lyophilization was evaluated its effect on the qualities of the no-fat chicken sausages in the presence of microbial transglutaminase (MTG) as compared to sodium tripolyphosphate (STPP). The cooking yields of all sausage samples were not different. Expressible moisture (EM) of sausage samples was reduced by adding fish SP, while the lowest EM values were observed in sausage samples containing STPP. The pH values of sausage samples were increased with the addition of fish SP and STPP. Proximate analysis revealed that the moisture, fat, and protein contents of all samples were not different (p>0.05). Textural properties (TP), measured by texture profile analysis, showed that hardness of no-fat sausages increased upon adding fish SP. However, the highest TP values were found in sausage samples with STPP. The redness values were reduced in sausage samples with STPP, while other color values were not affected by STPP. Sensory evaluation revealed that sausages with fish SP were accepted at the higher level than that of control. However, sausage samples with STPP showed highest TP and acceptability. Thus, partial substitution of STPP by SP would be possible to reduce phosphate level in the chicken sausages.

des-$Asp^4$-Amastatin, MRK-22 as an Inhibitor of Aminopeptidase M produced by Streptomyces sp. SL20209

  • Kho, Yung-Hee;Ko, Hack-Ryong;Chun, Hyo-Kon;Kim, Seung-Ho;Sung, Nack-Kie
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.154-157
    • /
    • 1995
  • MRK-22, an inhibitor of aminopeptidase M was isolated from the culture broth of Streptomyces sp. SL20209. The structure of MRK-22 was defined to be 3-amino-2-hydroxy-5-methylhexanoyl-valyl-valine, des-$Asp^4$-amastatin, by spectroscopic analysis and this was also confirmed by solid phase synthesis of the inhibitor. The molecular formula and weight of MRK-22 were $C_17H_33N_3O_5$ and MW 359($M^+$), respectively, and its $IC_50$ value against hog kidney AP-M was 0.79 $\mu$ g/ml.

  • PDF