• Title/Summary/Keyword: Microbial metabolite

Search Result 83, Processing Time 0.027 seconds

Lactobacillus plantarum Improves the Nutritional Quality of Italian Ryegrass with Alfalfa Mediated Silage

  • Ilavenil, Soundarrajan;Arasu, Mariadhas Valan;Vijayakumar, Mayakrishnan;Jung, Min-Woong;Park, Hyung Soo;Lim, Young Cheol;Choi, Ki Choon
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.174-178
    • /
    • 2014
  • The present study was planned to analyze the nutritional quality, microbial counts and fermentative acids in Italian ryegrass (IRG) 80% and alfalfa 20% (IRG-HV) mediated silage inoculated with lactic acid bacteria (LAB) as a probiotic strain for 3 months. Crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF), total digestible nutrient (TDN) and In-vitro dry matter digestibility (IVDMD), lactic acid bacteria (LAB), yeast and fungi counts and fermentation metabolites such as lactic acid, acetic acid and butyric acids were analyzed. The result shows that the nutritional quality and metabolite profiles of silage were significantly improved with LAB. For microbial counts, LAB showed dominant followed by yeast as compared with control silage. The pH of the silage also reduced significantly when silage inoculated with LAB. The result confirmed that silage preparation using different crops with L. plantarum inoculation is most beneficial for the farmers.

Antimicrobial active clones from soil metagenomic library

  • H. K. Lim;Lee, E. H;Kim, J.C.;Park, G. J.;K S. Jang;Park, Y. H.;K Y. Cho;S, W. Lee
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.108.1-108
    • /
    • 2003
  • Soil metagenome is untapped total microbial genome including that of the majority of unculturable bacteria present in soil. We constructed soil metagenomic library in Escherichia coli using DNA directly extracted from two different soils, pine tree rhizosphere soil and forest topsoil. Metagenomic libraries constructed from pine tree rhizosphere soil and forest topsoil consisted of approximately 33,700 clones and 112,000 clones with average insert DNA size of 35-kb, respectively. Subsequently, we screened the libraries to select clones with antimicrobial activities against Saccharomyces cerevisiae and Agrobacterium tumefaciens using double agar layer method. So far, we have a clone active against S. cerevisiae and a clone active against A. tumefaciens from the forest topsoil library. In vitro mutagenesis and DNA sequence analysis of the antifungal clone revealed the genes involved in the biosynthesis of antimicrobial secondary metabolite. Metagenomic libraries constructed in this study would be subject to search for diverse genetic resources related with useful microbial products.

  • PDF

Bioprospecting Endophytic Fungi and Their Metabolites from Medicinal Tree Aegle marmelos in Western Ghats, India

  • Mani, Vellingiri Manon;Soundari, Arockiamjeyasundar Parimala Gnana;Karthiyaini, Damodharan;Preethi, Kathirvel
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.303-310
    • /
    • 2015
  • The increasing emergence of lead drugs for the resistance produced by the pathogenic strains and arrival of new diseases have initiated the need for searching novel metabolites with best anticancer and antimicrobial properties than the existing one. With this view, the investigation was conducted for the isolation, identification, and biological evaluation of potential endophytic fungi of Aegle marmelos, a medicinal tree used for more than three decades, for curing various disorders. A total of 169 endophytic fungal strains obtained from sampling and among those 67 were pigmented strains. Upon antagonistic screening, five endophytic fungal strains exhibited antagonistic potentiality by inhibiting the pathogens. These five potent strains were characterized at molecular level by sequencing the amplified internal transcribed spacer (ITS) 1 and ITS 4 regions of rDNA and they were grouped under order Pleosporales, Eurotiales, and Capnodiales. The metabolites from the respective strains were produced in fungal culturing media and extracted using polar solvents. Further, the extracts of five endophytes manifested antimicrobial activity against tested clinical pathogens and Alternaria alternata (FC39BY), Al. citrimacularis (FC8ABr), and Curvularia australiensis (FC2AP) exhibited significant antimicrobial profile against 9 of 12 tested pathogens, showing broad spectrum activity. The antioxidant levels of all the five endophytes revealed the highest activity at least concentrations, and major activity was unveiled by the members of order Pleosporales FC2AP and FC8ABr. This research explains the value of endophytic fungal extracts and its significance of antimicrobial and antioxidant properties.

Evaluation of Matrix Effects in Quantifying Microbial Secondary Metabolites in Indoor Dust Using Ultraperformance Liquid Chromatographe-Tandem Mass Spectrometer

  • Jaderson, Mukhtar;Park, Ju-Hyeong
    • Safety and Health at Work
    • /
    • v.10 no.2
    • /
    • pp.196-204
    • /
    • 2019
  • Background: Liquid chromatography-tandem mass spectrometry (LC-MSMS) for simultaneous analysis of multiple microbial secondary metabolites (MSMs) is potentially subject to interference by matrix components. Methods: We examined potential matrix effects (MEs) in analyses of 31 MSMs using ultraperformance LC-MSMS. Twenty-one dust aliquots from three buildings (seven aliquots/building) were spiked with seven concentrations of each of the MSMs ($6.2pg/{\mu}l-900pg/{\mu}l$) and then extracted. Another set of 21 aliquots were first extracted and then, the extract was spiked with the same concentrations. We added deepoxy-deoxynivalenol (DOM) to all aliquots as a universal internal standard. Ten microliters of the extract was injected into the ultraperformance LC-MSMS. ME was calculated by subtracting the percentage of the response of analyte in spiked extract to that in neat standard from 100. Spiked extract results were used to create a matrix-matched calibration (MMC) curve for estimating MSM concentration in dust spiked before extraction. Results: Analysis of variance was used to examine effects of compound (MSM), building and concentration on response. MEs (range: 63.4%-99.97%) significantly differed by MSM (p < 0.01) and building (p < 0.05). Mean percent recoveries adjusted with DOM and the MMC method were 246.3% (SD = 226.0) and 86.3% (SD = 70.7), respectively. Conclusion: We found that dust MEs resulted in substantial underestimation in quantifying MSMs and that DOM was not an optimal universal internal standard for the adjustment but that the MMC method resulted in more accurate and precise recovery compared with DOM. More research on adjustment methods for dust MEs in the simultaneous analyses of multiple MSMs using LC-MSMS is warranted.

Studies on Screening and Iolation of ${\alpha}-Amylase$ Inhibitors of Soil Microorganisms( II ) -Isolation and Activities of the Inhibitor of Streptomyces Strain DMC-72- (토양균의 ${\alpha}-Amylase$ 저해제 검색 및 분리에 관한 연주(제2보) -스트렙토마이세스속 DMC-72 균주의 저해 성분의 분리 및 작용-)

  • Kim, Kyung-Jae;Lee, Shung-Hee;Kim, Jung-Woo;Kim, Ha-Won;Shim, Mi-Ja;Choi, Eung-Chil;Kim, Byong-Kak
    • The Korean Journal of Mycology
    • /
    • v.13 no.4
    • /
    • pp.203-212
    • /
    • 1985
  • Of 450 strains isolated from the soil microbes collected in various locations in Korea, a strain had a strong inhibitory activity against bacterial ${\alpha}-amylase$ and was named strain DMC-72 of the genus Streptomyces. The amylase inhibitory metabolite produced by this strain was purified by means of acetone precipitation, adsorption on Amberlite IRC-50 and SP-Sephadex C-25. The inhibitor was found to be a derivative of oligosaccharides by spectral and chemical data. The inhibitor was stable at the pH range of $1{\sim}13$ and at $100^{\circ}C$ for half an hour, also inhibited other amylases such as salivary ${\alpha}-amylase$, pancreatic ${\alpha}-amylase$, fungal ${\alpha}-amylase$ and glucoamylase. However, it showed no inhibitory activity against ${\alpha}-glucosidase$, ${\beta}-glucosidase$, dextranase, and ${\beta}-amylase$. The kinetic studies of the inhibitor showed that its inhibitory effects on starch hydrolysis by ${\alpha}-amylase$ were noncompetitive.

  • PDF

Effect about Neurite Extension of S9940, and Inhibitor of Exocytosis in PC12 Cells (PC12 세포 신경전달물질 방출 저해제 S9940이 신경세포 돌기신장에 미치는 영향)

  • Lee, Yun-Sik;Park, Kie-In
    • Toxicological Research
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 1998
  • We identified S9940, a novel microbial metabolite from Streptomyces spp., to inhibit the release of neurotransmitter from PC12 cells. S9940 is an inhibitor of trifiated norepinephrine ([$^{3}H$]-NE) release in high $K^+$ buffer solution containing ionomycin, indicating that S9940 inhibits neurotransmitter release after the influx of $Ca^{2+}$ ions. We also examined the effect of S9940 on $\beta-glucuronidase$ release from guinea pig neurophils and the effect on the neurite extension of PC12 cells and rat hippocampal neurons. As a result, S9940 inhibited $\beta-glucuronidase$ release: when treated with $5{\mu}g/ml$ of S9940, which prevented [$^{3}H$]-NE release, the inhibition of neurite extension for both PC12 cells and rat hippocampal neurons was observed.

  • PDF

Gentisyl Alcohol, an Antioxidant from Microbial Metabolite, Induces Angiogenesis In Vitro

  • Kim Hye-Jin;Kim Jin-Hee;Lee Choong-Hwan;Kwon Ho-Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.475-479
    • /
    • 2006
  • Gentisyl alcohol isolated from Penicillium sp. has an antioxidative activity, protecting cells from oxidative stresses. From our in vitro angiogenesis assays with bovine aortic endothelial cells (BAECs), gentisyl alcohol was newly identified as a pro-angiogenic small molecule that induces new blood vessel formation of the cells. Gentisyl alcohol stimulated the proliferation of BAECs in a dose-dependent manner. Moreover, it induced in vitro angiogenesis of BAECs such as invasiveness, migration, and tube formation of the endothelial cells. Effects of gentisyl alcohol on invasion and tube formation were also dose-dependent. These results demonstrate that gentisyl alcohol could affect the angiogenic phenotypes of endothelial cells and be developed as a new small molecule with pro-angiogenic activity.

Glutamine Synthetase of some Fermentation Bacteria: Function and Application

  • Tachiki, Takashi
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.506-508
    • /
    • 1986
  • Metabolic activity of inorganic nitrogenous compounds affects not only microbial growth but also metabolite production in fermentation technology. We have worked on the enzymes participating in ammonia assimulation of some fermentation bacteria. This paper summarizes the results on glutamine synthetase and its application in practical field. Glutamine synthetase (L-glutamate:ammonia ligase, EC. 6.3.1.2) catalyzes the formation of glutamine from glutamate and ammonia at the expense of cleavage of ATP and inorganic phosphate. The enzyme plays a dual role in nitrogen metabolism in bacteria; it is a key enzyme not only in the biosynthesis of various compounds through glutamine but also in the regulation of synthesis of some enzymes involved in the metabolism of nitrogenous compounds. The detailed works with the Eschericia coli and other enterobacterial enzymes revealed that glutamine synthetase is controlled by the following complex of mechanisms: (a) feedback inhibition by end products, (b) repression and derepression of enzyme synthesis, (c) modulation of enzyme activity in response to divalent cation and (d) covalent modification of enzyme protein by adenylylation and its cascade control. Comparative studies have also been made on the enzymes from other organisms.

  • PDF

Microbial Transformation of a Monoterpene, Geraniol, by the Marine-derived Fungus Hypocrea sp.

  • Leutou, Alain S.;Yang, Guohua;Nenkep, Viviane N.;Siwe, Xavier N.;Feng, Zhile;Khong, Thang T.;Choi, Hong-Dae;Kang, Jung-Sook;Son, Byeng-Wha
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1150-1152
    • /
    • 2009
  • Geraniol (1) is the biogenetic precursor of a number of monoterpenes. We tested various marine-derived microorganisms to determine their ability to biotransform 1. Only Hypocrea sp. was capable of transforming 1 into its oxidized derivative, 1,7-dihydroxy-3,7-dimethyl-(E)-oct-2-ene (2). The structure of the metabolite obtained was assigned on the basis of detailed spectroscopic data analyses.

Studies on Microbial Transformation of Meloxicam by Fungi

  • Shyam Prasad, G.;Girisham, S.;Reddy, S.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.922-931
    • /
    • 2009
  • Screening-scale studies were performed with 26 fungal cultures for their ability to transform the anti-inflammatory drug meloxicam. Among the different fungi screened, a filamentous fungus, Cunninghamella blakesleeana NCIM 687, transformed meloxicam to three metabolites in significant quantities. The transformation of meloxicam was confirmed by high-performance liquid chromatography (HPLC). Based on the liquid chromatography-tandem mass spectrometry (LC-MS/MS) data, two metabolites were predicted to be 5-hydroxymethyl meloxicam and 5-carboxy meloxicam, the major mammalian metabolites reported previously. A new metabolite was produced, which is not detected in mammalian systems. Glucose medium, pH of 6.0, temperature of $27^{\circ}C$, 5-day incubation period, dimethylformamide as solvent, and glucose concentration of 2.0% were found to be suitable for maximum transformation of meloxicam when studied separately. It is concluded that C. blakesleeana can be employed for biotransformation of drugs for production of novel metabolites.