• Title/Summary/Keyword: Microbial flora

Search Result 127, Processing Time 0.026 seconds

Flora Colonization and Oral Glucose Levels During the Early Postnatal Period in High-Risk Newborns (고위험신생아의 생후 초기 구강 내 균집락 형성과 당농도 및 영향요인)

  • Ahn, Young-mee;Sohn, Min;Jun, Yong-hoon;Kim, Nam-hee
    • Child Health Nursing Research
    • /
    • v.22 no.4
    • /
    • pp.379-389
    • /
    • 2016
  • Purpose: A longitudinal study was conducted to explore flora colonization and oral glucose high-risk newborns during the first 7 days after birth. Methods: Oral secretions of hospitalized newborns were obtained for microbial cultures and glucose test at days 1-7 after birth. Results: Among the total 112 newborns, 40% were girls and 73% were premature. Mean gestational age was $34.4{\pm}3.2$ weeks and weight was $2,266{\pm}697.5$ grams. The most common flora included Streptococcus (28.2%), Methicillin-resistant Staphylococcus aureus (MRSA, 10.9%), Staphylococcus (6.0%) and Coagulase-Negative Staphylococcus (CNS, 4.0%). The average oral glucose level was $29.2{\pm}23.0mg/dL{\sim}58.2{\pm}39.5mg/dL$. Newborns with higher oral glucose than serum (crude odds ratio [ORc] =1.75; 95% confidence interval [CI] =1.03-2.97), phototherapy (ORc=3.30; 95% CI=2.29-4.76) and prone position (ORc= 2.04; 95% CI=1.13-3.69) were more likely to be colonized. Having oral tubes (ORc=0.42; 95% CI=0.29-0.59), parental nutrition (ORc=0.21; 95% CI=0.13-0.32) and antibiotics (ORc=0.51; 95% CI=0.36-0.73) had protective effects. For oral glucose statistical significances existed on time effect among newborns with Streptococcus (F=9.78, p=.024), MRSA (F=7.60, p=.037) or CNS (F=11.15, p=.019) and interaction between time and colonization among newborns with all of four flora (F=2.73, p=.029) or colonization with only Staphylococcus (F=2.91, p=.034). Conclusion: High-risk newborns develop flora colonization at an early period of life. Their clinical features were associated with types and time of oral flora colonization. They need close monitoring and multifaceted intervention to improve oral environment and infection control.

A study on the total cell count variation of commercial liquid seed by adding PAC and PAS (PAC 및 PAS 첨가에 따른 상업용 액상 종균제의 총균수 변화에 관한 연구)

  • 박미자;박경식;김승재
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.79-90
    • /
    • 2001
  • Commercial liquid seeds are used for supplying active microbial flora to organic wastewater treatment plants of high feed-to-microorganism ratio and to maintain optimal microbial condition during unsteady state operation of the biological wastewater treatment plant. In addition to bacterial cells, the liquid weeds contain various additives for special purposes as well as organic substrates for energy supply. The additives give physical stability for the maintenance of microbial decomposition activity and ability to control the overgrowth of seed strains. In this work, the effects of addition of two kinds of typical substrate additives, poly aluminum chloride(PAC) and poly aluminum sulfate(PAS) on the consitutional total cell counts(CFU/ml) of four kinds of reorganization liquid seeds(RLS I, RLS II, RLS III and RLS IV) were studied experimentally. The addition of PAC and PAS gave negative effect on TCC constitution for the four seeds studied.

  • PDF

Genomic Fingerprinting of genera Bifidobacterium using Microbial Uniprimer Kit

  • Hwang, Young-Chol;Park, Jong-Sun;Kang, Byoung-Yong;Choi, Sung-Sook;Kim, Kyung-Jae;Ha, Nam-Joo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.163.2-163.2
    • /
    • 2003
  • The genera Bifidobacterium is a member of the normal intestinal flora in humans, and important in food industry. In order to test the genetic identity of this bacterial genera, four primers originated from rice genome (SRILS Microbial $UniPrimers^{TM}$ kit) were used in molecular typing of 7 Bifidobacterial species and 20 isolates from various source. SRILS Microbial $UniPrimers^{TM}$ kit were effectively applied to genomic fingerprinting of various organism such as plant, animal and microorganism. (omitted)

  • PDF

A Study on Bioremediation of Fish Farm Sediment Using CaO2 by Enhancement of Indigenous Microbial Activity (어류양식장 저질개선을 위한 과산화칼슘 투입에 의한 생태 환경변화 관찰)

  • Cho, Daechul;Bae, Hwan-Jin;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1187-1193
    • /
    • 2012
  • The aim of this research is to enhance the bottom environment of Geoje fish farm that has been severely contaminated. Treatment of microbial agent and/or calcium oxide significantly changed that environment: in ignition loss, either treatment (25% or 21%) showed better than mixed treatment (13.2%). In COD, the oxygen releasing agent or mixed treatment reduced the index by more than 20%. In T-P and T-N, the effects of $CaO_2$ on them were overwhelming (50% or more) meanwhile that of the microbial agent on them was less than 20%. Also, $CaO_2$ influenced on the microbial flora: Desulfobvibrio thermophilus, a sulfate reducing bacterium decreased in number, considering the increase of pH and rise of redox potential. In contrast, Pseudomonas sp., Pseudoalteromonas sp., Pseudomonas aeruginosa were remarkably dominant over other species with mixed treatment as a PCA analysis confirmed it.

Antimicrobial activity of Caesalpinia sappan L. extract against skin flora (소목(Caesalpinia sappan L.) 추출물의 피부 상재균에 대한 항균 활성)

  • Hwang, Mi Kyung;Lee, Yong Hyun;Kim, Dong Chung
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.1
    • /
    • pp.83-87
    • /
    • 2021
  • Antimicrobial activity of an aqueous extract from Caesalpinia sappan L. was investigated against skin flora such as Escherichia coli, Staphylococcus aureus, Cutibacterium acnes, and Malassezia furfur. The yield and polyphenol content of the aqueous extract were 14.01±0.81% and 487.5±19.69 ㎍/mg-extract, respectively. The minimum inhibitory concentration of the aqueous extract against E. coli, S. aureus, C. acnes, and M. furfur was 0.875, 1.750, 1.750, and 1.750 mg/mL, respectively. In disc diffusion test, the aqueous extract of C. sappan L. increased the clear zone in a dose-dependent manner. The aqueous extract inhibited the microbial growth in a concentration-dependent manner.

L-arginine and N-carbamoylglutamic acid supplementation enhance young rabbit growth and immunity by regulating intestinal microbial community

  • Sun, Xiaoming;Shen, Jinglin;Liu, Chang;Li, Sheng;Peng, Yanxia;Chen, Chengzhen;Yuan, Bao;Gao, Yan;Meng, Xianmei;Jiang, Hao;Zhang, Jiabao
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.166-176
    • /
    • 2020
  • Objective: An experiment was conducted to determine the effects of L-arginine (L-Arg) and N-carbamoylglutamic acid (NCG) on the growth, metabolism, immunity and community of cecal bacterial flora of weanling and young rabbits. Methods: Eighteen normal-grade male weanling Japanese White rabbits (JWR) were selected and randomly divided into 6 groups with or without L-Arg and NCG supplementation. The whole feeding process was divided into weanling stage (day 37 to 65) and young stage (day 66 to 85). The effects of L-Arg and NCG on the growth, metabolism, immunity and development of the ileum and jejunum were compared via nutrient metabolism experiments and histological assessment. The different communities of cecal bacterial flora affected by L-Arg and NCG were assessed using high-throughput sequencing technology and bioinformatics analysis. Results: The addition of L-Arg and NCG enhanced the growth of weanling and young rabbit by increasing the nitrogen metabolism, protein efficiency ratio, and biological value, as well as feed intake and daily weight gain. Both L-Arg and NCG increased the concentration of immunoglobulin A (IgA), IgM, and IgG. NCG was superior to L-Arg in promoting intestinal villus development by increasing villus height, villus height/crypt depth index, and reducing the crypt depth. The effects of L-Arg and NCG on the cecal bacterial flora were mainly concentrated in different genera, including Parabacteroides, Roseburia, dgA-11_gut_group, Alistipes, Bacteroides, and Ruminococcaceae_UCG-005. These bacteria function mainly in amino acid transport and metabolism, energy production and conversion, lipid transport and metabolism, recombination and repair, cell cycle control, cell division, and cell motility. Conclusion: L-Arg and NCG can promote the growth and immunity of weanling and young JWR, as well as effecting the jejunum and ileum villi. L-Arg and NCG have different effects in the promotion of nutrient utilization, relieving inflammation and enhancing adaptability through regulating microbial community.

Ribosomally Synthesiszed Antimicrobial Peptides (Bacteriocins) in Lactic Acid Bacteria: A Review

  • Nes, Ingolf F.;Yoon, Sung-Sik;Diep, Dzung B.
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.675-690
    • /
    • 2007
  • Bacteriocins in Gram-positive bacteria have attracted much attention because many have a strong antimicrobial activity also against bacteria outside the genera of the producers. Lantibiotics and the pediocin-like bactericins have attracted most attention since they kill a broad spectrum of Gram-positive bacteria including important pathogens. But many other promising Gram-positive bacteriocins have been thoroughly characterized. Recent studies have shown that bacteriocins may playa role in the intestinal flora to protect us against the food-borne pathogens. Bacterial genome sequencing has demonstrated that there may be an arsenal of such compounds and we are only seeing the top of the iceberg. The present review gives a short outlook of the field of bacteriocins with focus on lactic acid bacteria and includes recent findings.

A DEEPLY BRANCHED NOVEL PHYLOTYPE FOUND IN PADDY SOIL

  • Kim, Hong-Ik;Kazunori Nakamura;Hiroshi Oyaizu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.128-134
    • /
    • 2000
  • In the course of flora analysis of soil Archaea, we found very strange 16S rDNA clones, which could possibly constitute a sister clade from known two archael, Crenarchaeota and Euryarchaeota, lineages. Overall signature sequences showed that the clones were closely related to domains Archaea and Eucarya. However, at least nine nucleotides distinguished the novel clones from domains Archaea and Eucarya. Phylogenetic trees drawn by maximum parsimony, neighbor joining and maximum likelihood methods also showed unique phylogenetic position of the clones. A very specific primer set was synthesized to detect the presence of the novel group of organisms in terrestrial environments. A specific DNA fragment was amplified from all of paddy soil DNAs, and this fact suggests that the novel organisms inhabit paddy soils.

  • PDF

Composting of Garbage by Home Composter for Household Use : Changes in Microbial Flora (가정용 소형 퇴비화 용기를 이용한 부엌쓰레기의 퇴비화 과정중 미생물상 변동)

  • Kim, Yong-Chang;Joe, Keung-Oak;Lee, Yon;Joo, Woo-Hong;Seo, Jeoung-Yoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.44-47
    • /
    • 1997
  • The change in microbial flora has been studied through dwelling house composting by the composter with double layer walls. The results are summarized as followes. 1. Mesophilic bacteria increased and decreased mildly, thermophilic bacteria showed a tendency to decrease except for spring, and the number of mesophilic bacteria and thermophilic bacteria had a tendency to increase and decrease simultaneously. 2. The number of mesophilic actinomycetes were increased at the early stage of compositing in winter, mildly decreased in spring and slightly decreased in summer, and the number of thermophilic actinomycetes were decreased at the early stage of composting. 3. The decrease in the number of mesophilic fungi was observed at the middle stage in summer, but the mild increase was observed in spring and winter. The number of thermophilic fungi was generally decreased. 4. Ammonia oxidizer and nitrite oxidizer were observed in this field composting much more than in the other composting experiments.

  • PDF

The Role of Gut Microbiota in Obesity and Utilization of Fermented Herbal Extracts (비만에서 장내 미생물 균총의 역할과 발효 한양의 활용)

  • Park, Jung-Hyun;Kim, Ho-Jun;Lee, Myeong-Jong
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.9 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • Complex microbial communities play an important role in the human health and co-evolved with human in the form of symbiosis. Many literatures provide new evidences that the increased prevalence of obesity cannot be attributed solely to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. The intestinal flora was recently proposed as an environmental factor responsible for the control of body weight and energy metabolism. A number of studies suggest that the modulation of gut microbiota affects host metabolism and has an impact on energy storage and demonstrated a role for the gut microbiota in weight gain, fat increase, and insulin resistance. Variations in microbiota composition are found in obese humans and mice and the microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. As well, the gut microbial flora plays a role in converting nutrients into calories. Specific strategies for modifying gut microbiota may be a useful means to treat or prevent obesity. Dietary modulations of gut microbiota with a view to increasing bifidobacteria have demonstrated to reduce endotoxemia and improve metabolic diseases such as obesity. The fermentation of medicinal herbs is intended to exert a favorable influence on digestability, bioavailability and pharmacological activity of herbal extract. Therefore we also expect that the fermented herbal extracts may open up a new area to treat obesity through modulating gut microbiota.

  • PDF