• Title/Summary/Keyword: Microbial fertilizer

Search Result 303, Processing Time 0.024 seconds

Effects of Short-Term Tillage on Rhizosphere Soil Nitrogen Mineralization and Microbial Community Composition in Double-Cropping Rice Field

  • Haiming Tang;Li Wen;Kaikai Cheng;Chao Li;Lihong Shi;Weiyan Li;Yong Guo;Xiaoping Xiao
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1464-1474
    • /
    • 2024
  • Soil extracellular enzyme plays a vital role in changing soil nitrogen (N) mineralization of rice field. However, the effects of soil extracellular enzyme activities (EEA) and microbial community composition response to N mineralization of rice field under short-term tillage treatment needed to be further explored. In this study, we investigated the impact of short-term (8-year) tillage practices on rhizosphere soil N transformation rate, soil enzyme activities, soil microbial community structure, and the N mineralization function gene abundances in double-cropping rice field in southern China. The experiment consisted of four tillage treatments: rotary tillage with crop straw input (RT), conventional tillage with crop straw input (CT), no-tillage with crop straw retention (NT), and rotary tillage with all crop straw removed as a control (RTO). The results indicated that the rhizosphere soil N transformation rate in paddy field under the NT and RTO treatments was significantly decreased compared to RT and CT treatments. In comparison to the NT and RTO treatments, soil protease, urease, β-glucosaminidase, and arginase activities were significantly improved by the CT treatment, as were abundances of soil sub, npr, and chiA with CT and RT treatments. Moreover, the overall diversity of soil bacterial communities in NT and RTO treatments was significantly lower than that in RT and CT treatments. Soil chitinolytic and bacterial ureolytic communities were also obviously changed under a combination of tillage and crop straw input practices.

Physiological Responses of Tomato Plants and Soil Microbial Activity in Salt Affected Greenhouse Soil

  • Sung, Jwakyung;Lee, Suyeon;Nam, Hyunjung;Lee, Yejin;Lee, Jongsik;Almaroai, Yaser A.;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1065-1072
    • /
    • 2012
  • Crop productivity decreases globally as a result of salinization. However, salinity impact on greenhouse-grown crops is much higher than on field-grown crops due to the overall concentrations of nutrients in greenhouse soils. Therefore, this study was performed to determine the short-term changes in growth, photosynthesis, and metabolites of tomato plants grown in greenhouse under heavily input of fertilizers evaluated by microbial activity and chemical properties of soils. The soils (< 3, 3.01~6, 6.01~10 and > 10.01 dS $m^{-1}$) from farmer's greenhouse fields having different fertilization practices were used. Results showed that the salt-accumulated soil affected adversely the growth of tomato plants. Tomato plants were seldom to complete their growth against > 10.0 dS $m^{-1}$ level of EC. The assimilation rate of $CO_2$ from the upper fully expanded leaves of tomato plants is reduced under increasing soil EC levels at 14 days, however; it was the highest in moderate or high EC-subjected (3.0 ~ 10.0 dS $m^{-1}$) at 28 days. In our experiment, soluble sugars and starch were sensitive markers for salt stress and thus might assume the status of crops against various salt conditions. Taken together, tomato plants found to have tolerance against moderate soil EC stress. Various EC levels (< 3.0 ~ 10.0 dS $m^{-1}$) led to a slight decrease in organic matter (OM) contents in soils at 28 days. Salinity stress led to higher microbial activity in soils, followed by a decomposition of OM in soils as indicated by the changes in soil chemical properties.

Microbial Fertilizer Containing Lactobacillus fermentum Improved Creeping Bentgrass Density (유산균(Lactobacillus fermentum) 함유 미생물제제의 크리핑 벤트그래스 밀도개선 효과)

  • Jo, Gi-Woong;Kim, Young-Sun;Ham, Soun-Kyu;Bae, Eun-Ji;Lee, Jae-Pil;Kim, Doo-Hwan;Kim, Woo-Sung;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.4
    • /
    • pp.322-332
    • /
    • 2017
  • Microbial fertilizer has been used to prompt turfgrass growth and quality and to prevent turfgrass diseases in turfgrass management of golf courses. This study was conducted to evaluate effects of microbial fertilizer containing Lactobacillus fermentum (MFcL) on changes of turfgrass quality and growth by investigating turf color index, chlorophyll index, clipping yield, and nutrient content in the turfgrass tissue. Treatments were designed as follows; non-fertilizer (NF), control fertilizer (CF), MFcL treatments [CF+$1.0g\;m^{-2}$(MFL), CF+$2.0g\;m^{-2}$ (2MFL)], and only MFcL treatment (OMF; $1.0g\;m^{-2}$ MFL). Chemical properties of soil by application of MFcL was unaffected. Turf color index, chlorophyll index, clipping yield and nutrient content and uptake of MFcL treatments were similar to CF. Furthermore, turfgrass shoot density of MFL was increased by 20% than that of CF, and that of OMF by 22% than NF. These results show that the application of microbial fertilizer containing L. fermentum increased turfgrass shoot density, which is not attributed to nutrient uptake in this study, but needs to be further investigated with other mechanisms such as biostimulant induction or phytohormone production.

Effect of Tillage System and Fertilization Method on Biological Activities in Soil under Soybean Cultivation (경운방법과 시비방법이 콩 재배 토양의 생물학적 활성에 미치는 영향)

  • Oh, Eun-Ji;Park, Ji-Su;Yoo, Jin;Kim, Suk-Jin;Woo, Sun-Hee;Chung, Keun-Yook
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.4
    • /
    • pp.223-229
    • /
    • 2017
  • BACKGROUND: Tillage systems and fertilization play an important role in crop growth and soil improvement. This study was conducted to determine the effects of tillage and fertilization on the microbial biomass C and dehydrogenase activity of soils in a field under cultivation of soybean. METHODS AND RESULTS: An experimental plot, located in the temperate climate zone, was composed of two main sectors that were no-tillage (NT) and conventional tillage (CT), and they were subdivided into four plots, respectively, in accordance with types of fertilizers (non fertilizer, chemical fertilizer, hairy vetch, and liquid pig manure). Microbial biomass C and dehydrogenase activity were evaluated from May to July in 2016. The microbial biomass C and dehydrogenase activity of NT soils were significantly higher than those of CT in all fertilizer treatments, and they were further increased in hairy vetch treatment than the other fertilizer treatments in both NT and CT. The dehydrogenase activity was closely related to microbial biomass C. CONCLUSION: It is concluded that application of green manure combined with no-tillage can provide viable management practices for enhancing microbial properties of soil.

Effects of Microbial Fertilizer Included Aspergillus Ochraceus Group on Density of Soil Microorganism and Growth Responses and Yield of Cucumber (Aspergillus Ochraceus Group이 함유된 미생물제제(微生物製劑) 시용(施用)에 따른 토양미생물상 변화와 오이의 생장반응(生長反應) 및 수량(收量))

  • Song, Beom-Heon;Lee, Chul-Won;Chung, Bong-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.405-411
    • /
    • 1999
  • Growth responses and yields of cucumber, the populations of soil microorganisms, and the control value of nematodes were examined with six different treatments of chemical fertilizer, compost, microbial fertilizer(MF), and the combined applications of NPK + MF and compost. Cucumber, Eunseong Bakdadaki cultivar, was cultivated in the greenhouse. Higher plant height was appeared with treatments of the combined application of NPK + compost and NPK + MF compared to other treatments, especially at the early growth until 20th day after transplanting. Also, higher number of opened flowers showed with the combined treatments of NPK + compost and NPK + MF than those with others. The control value of nematodes at 60th day after transplanting with treatments of MF and NPK + MF was about 39.0% and 61.6%, respectively. The density of soil microorganisms was higher in order of actinomycetes, bacteria, and fungus. Their densities were not clearly different with treatments. Fruit yields of cucumber with treatments of NPK, compost, microbial fertilizer, and additions of compost and microbial fertilizer to NPk were higher, about 40 to 60%, than that with the control. The highest fruit yield was with NPK + MF and next highest fruit yield was with NPK + compost. It is assumed that the combined application of chemical fertilizers, compost, and microbial fertilizers would be increased the plant productivity.

  • PDF

Effect of Microbial Fertilizers on Yield of Young Radish(Raphanus sativus L.)

  • 김경제;김수정
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.3
    • /
    • pp.103-117
    • /
    • 2001
  • This study was inducted to investigate the effects of microbial fertilizers on the fields of young radish(Raphanus sativus L.), chemical components of plant and soil, and the microbial floras. Six microbial fertilizers, MPK+Husk+Palma, Husk+Palma, MPK+Compost, Compost, BIO Livestock Clean System(BLCS) cattle dropping, and Tomi were used. The yields of young radish were increased in six microbial fertilizer treatments. The fresh matter weight, the number of leaves, and the dry matter weight of young radish in BLCS cattle dropping treatment, the leaf length in MPK+Husk+Palma treatment, the sugar content in Husk+Palma treatment, arid the leaf width in Tomi treatment showed the highest amount, respectively. The effects of microbial fertilizers on chemical characteristics of young radish and soil were examined. Phosphoric acid amount of young radish in Tomi treatment was much higher than other treatments. Potassium amount of young radish showed high significance in all microbial fertilizer treatments compared with control, and shoved the highest in Compost treatment . Two components, phosphoric acid find potassium, in soil inoculated by microbial fertilizers showed significant. Phosphoric acid in the Tomi treatment and Potassium in Husk+Palma treatment were increased. The microorganic populations in soil inoculated with microbial fertilizers were examined. While the number of Bacillus in ceil was increased in MPK+Husk+Palma treatment, the numbers of total bacteria, actinomycetes, and fungi were increased in Tomi treatment.

  • PDF

Long-term Effects of Inorganic Fertilizer and Compost Application on Rice Sustainability in Paddy Soil

  • Lee, Chang Hoon;Park, Chang Young;Jung, Ki Youl;Kang, Seong Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.223-229
    • /
    • 2013
  • Sustainability index was calculated to determine the best management for rice productivity under long-term inorganic fertilizer management's practices. It is based on nutrient index, microbiological index and crop index related to sustainability as soil function. Indicators for calculating sustainability index were selected by the comparison of soil properties and rice response in paddy soil with fertilization. Total twenty two indicators were determined to assess nutrient index, microbiological index and crop index in order to compare the effect of different fertilization. The indices were applied to assess the sustainability with different inorganic fertilizer treatments such as control, N, NK, NP, NPK, NPK+Si, and NPK+Compost. The long-term application of compost with NPK was the highest sustainability index value because it increased nutrient index, microbial index and crop index. The use of chemical fertilizers resulted in poor soil microbial index and crop index, but the treatments like NP, NPK, and NPK+Si were maintained sustainability in paddy soil. These results indicate that application of organic and chemical fertilizer could be a good management to improve rice sustainability in paddy soil.

Use of Terminal Restriction Length Polymorphism (T-RFLP) Analysis to Evaluate Uncultivable Microbial Community Structure of Soil

  • Chauhan, Puneet Singh;Shagol, Charlotte C.;Yim, Woo-Jong;Tipayno, Sherlyn C.;Kim, Chang-Gi;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.127-145
    • /
    • 2011
  • Various environmental ecosystems are valuable sources for microbial ecology studies, and their analyses using recently developed molecular ecological approaches have drawn significant attention within the scientific community. Changes in the microbial community structures due to various anthropogenic activities can be evaluated by various culture-independent methods e.g. ARISA, DGGE, SSCP, T-RFLP, clone library, pyrosequencing, etc. Direct amplification of total community DNA and amplification of most conserved region (16S rRNA) are common initial steps, followed by either fingerprinting or sequencing analysis. Fingerprinting methods are relatively quicker than sequencing analysis in evaluating the changes in the microbial community. Being an efficient, sensitive and time- and cost effective method, T-RFLP is regularly used by many researchers to access the microbial diversity. Among various fingerprinting methods T-RFLP became an important tool in studying the microbial community structure because of its sensitivity and reproducibility. In this present review, we will discuss the important developments in T-RFLP methodology to distinguish the total microbial diversity and community composition in the various ecosystems.

Characterization of Microbial Community Changes in Process Affected by Physicochemical Parameters During Liquid Fertilization of Swine Waste

  • Shin, Mi-Na;Kim, Jin-Won;Shim, Jaehong;Koo, Heung-Hoe;Lee, Jai-Young;Cho, Min;Oh, Byung-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.173-181
    • /
    • 2013
  • Livestock wastes are considered as major environmental pollutants because they contain high concentration of organic materials. In 2001, The Environmental Department reported that stock farmers were increasing as 5.1%/year, which resulted in a gradual increase in livestock wastes generation. The direct disposal of livestock wastes create several environmental problems. Thus, several countries banned the disposal of livestock wastes in environment including aquatic systems. Recently, aeration-based liquid fertilization was considered as potential way for the disposal of livestock wastes. In this study, next generation sequencing (NGS) analysis was used to understand the microbial community changes during liquid fertilization of livestock wastes. Microbial community was compared with liquid fertilizer physicochemical analysis such as $BOD_5$, $COD_{Mn}$ pH, N (Nitrogen), P (Phosphorus), K (Potassium) etc. The physicochemical parameters and bacterial community results pave the way for producing effective livestock-based fertilizer. By comparing the physical characteristics of the manure with microbial community changes, it is possible to optimize the conditions for producing effective fertilizer.