• Title/Summary/Keyword: Microbial culture

Search Result 885, Processing Time 0.027 seconds

Inorganic Phosphate Solubilization by Immobilized Pantoea agglomerans under in vitro Conditions (고정화된 Pantoea agglomerans에 의한 난용성 인산의 가용화)

  • Kim, Eun-Hee;Park, Sung-Ae;Park, Myoung-Su;Yang, Jin-chul;Madhaiyan, Munusamy;Seshadri, Sundaram;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.36-40
    • /
    • 2004
  • It is now widely accepted that immobilized microbial cells can overcome some of the problems associated with microbial survival stability, efficacy, storage, transportation and ease of application in agricultural environments. Pantoea agglomerans, a phosphate solubilizing bacterium, was immobilized in alginate, agar and gelatin carriers. All the three immobilfized carriers with bacterial cells of P. agglomerans were compared for solubilization of tricalcium phosphate in pure liquid cultures. While alginate beads were tested for phosphate solubilization on alternate days up to five days, agar beads and gelatin cubes were subjected for one time phosphate solubilization analysis after seven days. Both alginate and agar immobilized cells of P. agglomerans exhibited higher efficiency in increasing the solubilizaliun of tricalcium phosphate than gelatin immobilized cells. The culture filtrate of alginate bead inoculation treatment registered a rapid increase in soluble phosphate concentration upon incubation. A corresponding decrease in the pH of the medium was also observed in all the treatments.

Effect of Protective Compounds on the Survival, Electrolyte Leakage, and Lipid Degradation of Freeze-Dried Weissella paramesenteroides LC11 During Storage

  • Yao, Amenan A.;Wathelet, Bernard;Thonart, Philippe
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.8
    • /
    • pp.810-817
    • /
    • 2009
  • The effect of cryoprotectants (maltodextrin+glycerol) and cryoprotectants+antioxidant [ascorbic acid and/or butylated hydroxytoluene (BHT)] mixtures on the survival, electrolyte leakage, and lipid degradation of freeze-dried Weissella paramesenteroides LC11 during storage was investigated and compared with that of the control (cells without additives) over a 90-day storage period at 4 or $20^{\circ}C$ in glass tubes with water activity ($a_w$) of 0.23. The survival, electrolyte leakage, and lipid degradation were evaluated through colony counts, electrical conductivity, and thiobarbituric acid reactive substances (TBARS) content, respectively. The fatty acids composition was determined by gas chromatography, in both the total lipid extract and the polar lipid fraction, and compared with that of the control after the 90-day storage period. As the storage proceeded, increases in leakage value and TBARS content, as well as a decrease in viability, were observed. After 90 days of storage, the major fatty acids found in both the total lipid extract and the polar lipid fraction were palmitic (16:0), palmitoleic (16:1), stearic (18:0), oleic (18:1), linoleic (18:2), and linolenic (18:3) acids. The survival, leakage value, TBARS content and 18:2/16:0 or 18:3/16:0 ratio were the greatest for the protected strain held at $4^{\circ}C$. Cells with the cryoprotectants+BHT mixture showed the highest percentage of survival and 18:2/16:0 or 18:3/16:0 ratio in both lipid extracts, as well as the lowest leakage value and TBARS content after the 90-day storage period. Drying cells with the cryoprotectants+BHT mixture considerably slowed down polar lipid degradation and loss of membrane integrity, resulting in improved viability during storage.

Microbial Characterization of Jangsu (장수 발효의 미생물학적 연구)

  • Kim, Sun-Young;Souane, Moussa;Kim, Gie-Eun;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.689-694
    • /
    • 1991
  • Jangsu, a Korean ancient non-alcoholic beverage made by lactic acid fermentation of cooked rice, was prepared and the microbial characteristics were investigated. The periodic removal of fermented product and the addition of newly made cooked rice and cold water as new substrate enhanced the growth of lactic acid forming bacteria but supressed the growth of proteolytic bacteria. The important microorganisms in jangsu were Lactobacillus, Lactococcus, Pediococccus and Leuconostoc species. Lactococcus thermophilus, Lactobacillus coryniformis and Leuconostoc mesenteroides were identified. The isolated strains were cultivated and used as starter culture of jangsu. Some useful strains were selected which were able to produce acceptable flavor and sufficient amount of acid lowering the pH to near 4.0.

  • PDF

Effect of Low Salt Concentrations on Microbial Changes During Kimchi Fermentation Monitored by PCR-DGGE and Their Sensory Acceptance

  • Ahmadsah, Lenny S. F.;Min, Sung-Gi;Han, Seon-Kyeong;Hong, Yeun;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.2049-2057
    • /
    • 2015
  • Various salt concentrations (1.0%, 1.3%, 1.6%, 1.9%, and 2.1% labeled as sample A, B, C, D, and E, respectively) were investigated for microbial diversity, identification of Lactic Acid Bacteria (LAB) in salted kimchi cabbage, prepared under laboratory conditions. These samples were stored at 4°C for 5 weeks in proper aluminum-metalized pouch packaging with calcium hydroxide gas absorber. A culture-independent method known as polymerase chain reaction - denaturing gradient gel electrophoresis was carried out to identify LAB distributions among various salt concentration samples that had identified 2 Weissella (W. confusa and W. soli), 1 Lactobacillus (Lb. sakei), and 3 Leuconostoc (Lc. mesenteroides, Lc. lactis, and Lc. gelidum) in the overall kimchi samples. The pH, titratable acidity, viable cell counts, and coliform counts were not affected by salt variations. In order to assess sensory acceptance, the conducted sensory evaluation using a 9-point hedonic scale had revealed that samples with 1.3% salt concentration (lower than the manufacturer's regular salt concentration) was more preferred, indicating that the use of 1.3% salt concentration was acceptable in normal kimchi fermentation for its quality and safety. Despite similarities in pH, titratable acidity, viable cell counts, coliform counts, and LAB distributions among the various salt concentrations of kimchi samples, the sample with 1.3% salt concentration was shown to be the most preferred, indicating that this salt concentration was suitable in kimchi production in order to reduce salt intake through kimchi consumptions.

Characterization of Three Antifungal Calcite-Forming Bacteria, Arthrobacter nicotianae KNUC2100, Bacillus thuringiensis KNUC2103, and Stenotrophomonas maltophilia KNUC2106, Derived from the Korean Islands, Dokdo and Their Application on Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1269-1278
    • /
    • 2013
  • Crack remediation on the surface of cement mortar using microbiological calcium carbonate ($CaCO_3$) precipitation (MICP) has been investigated as a microbial sealing agent on construction materials. However, MICP research has never acknowledged the antifungal properties of calcite-forming bacteria (CFB). Since fungal colonization on concrete surfaces can trigger biodeterioration processes, fungi on concrete buildings have to be prevented. Therefore, to develop a microbial sealing agent that has antifungal properties to remediate cement cracks without deteriorative fungal colonization, we introduced an antifungal CFB isolated from oceanic islands (Dokdo islands, territory of South Korea, located at the edge of the East Sea in Korea.). The isolation of CFB was done using B4 or urea-$CaCl_2$ media. Furthermore, antifungal assays were done using the pairing culture and disk diffusion methods. Five isolated CFB showed $CaCO_3$ precipitation and antifungal activities against deteriorative fungal strains. Subsequently, five candidate bacteria were identified using 16S rDNA sequence analysis. Crack remediation, fungi growth inhibition, and water permeability reduction of antifungal CFB-treated cement surfaces were tested. All antifungal CFB showed crack remediation abilities, but only three strains (KNUC2100, 2103, and 2106) reduced the water permeability. Furthermore, these three strains showed fungi growth inhibition. This paper is the first application research of CFB that have antifungal activity, for an eco-friendly improvement of construction materials.

Analysis and Quantification of Ammonia-Oxidizing Bacteria Community with amoA Gene in Sewage Treatment Plants

  • Hong, Sun Hwa;Jeong, Hyun Duck;Jung, Bongjin;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1193-1201
    • /
    • 2012
  • The analysis and quantification of ammonia-oxidizing bacteria (AOB) is crucial, as they initiate the biological removal of ammonia-nitrogen from sewage. Previous methods for analyzing the microbial community structure, which involve the plating of samples or culture media over agar plates, have been inadequate because many microorganisms found in a sewage plant are unculturable. In this study, to exclusively detect AOB, the analysis was carried out via denaturing gradient gel electrophoresis using a primer specific to the amoA gene, which is one of the functional genes known as ammonia monooxygenase. An AOB consortium (S1 sample) that could oxidize an unprecedented 100% of ammonia in 24 h was obtained from sewage sludge. In addition, real-time PCR was used to quantify the AOB. Results of the microbial community analysis in terms of carbon utilization ability of samples showed that the aeration tank water sample (S2), influent water sample (S3), and effluent water sample (S4) used all the 31 substrates considered, whereas the AOB consortium (S1) used only Tween 80, D-galacturonic acid, itaconic acid, D-malic acid, and $_L$-serine after 192 h. The largest concentration of AOB was detected in S1 ($7.6{\times}10^6copies/{\mu}l$), followed by S2 ($3.2{\times}10^6copies/{\mu}l$), S4 ($2.8{\times}10^6copies/{\mu}l$), and S3 ($2.4{\times}10^6copies/{\mu}l$).

Clinical Features and Surgical Results of Brain Abscesses

  • Park, Dae-Hee;Lee, Sang-Hoon;Lee, Kyoung-Soo;Chung, Ui-Wha;Park, Kang-Hwa;Lee, Young-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.37 no.4
    • /
    • pp.268-271
    • /
    • 2005
  • Objective: This study is undertaken to review the characteristics, risk factors and the surgical outcomes in long term follow-up of brain abscesses. Methods: We had reviewed medical records and radiological findings in patients with brain abscess who underwent operations in our hospital from January 1992 to June 2003. Results: Observed 11 cases were comprised of 8 men and 3 women with 42 years old average age ranging from 17 to 66. Lesions were located at frontal lobe in 5 cases, parietal in 4 cases, temporal in 1 case, and occipital in 1 case. The mean follow-up period was 23.8 months and ranged from 5 to 33 months. The microbial sources of infection had been found in 5 cases (45%). The organisms were identified by using the microbial culture obtained from the excisional biopsy. We had applied all cases with surgical excision. Empirical antibiotic treatment started soon after diagnosis in all cases. The mortality and morbidity of surgical excision were low. Nine patients were neurologically improved. One patient had died after the operation due to acute respiratory distress syndrome (ARDS). Conclusion: The single and large abscess located in an accessible lesion is a good candidate for surgical excision because of it's low morbidity, mortality, and favorable outcome after surgical excision. Further study is required to compare the surgical excision with other treatment modalities of brain abscess.

Chemical Composition of Kiwifruits, Their Anti-microbial Activity and Their Hyperplasia Inhibition Effect of against Lung Cancer Cells (참다래의 이화학적 성분, 항균 활성 및 폐암 세포 증식 억제 효과)

  • Park, Yong-Seo;Lee, Gun-Soon;Towantakavani, Korsak;Park, Yun-Jum;Oh, Dae-Min;Heo, Buk-Gu
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.2
    • /
    • pp.202-209
    • /
    • 2009
  • This study was conducted to gather the basic data on the spread of the domestic kiwifruits, and the development of the manufactured goods and the health functional foods produced using kiwifruits. We determined the chemical compositions of four types of kiwifruits cultivated in Korea, Daeheung, Bidan, Haegeum and Hayward. In addition, we measured the anti-microbial activities and cytotoxicities of these types of kiwifruits. The vitamin C contents of the kiwifruits increased in the order of Bidan (93.82 mg/100 g), Daeheung (85.89 mg/100 g), Haegeum (83.73 mg/100 g) and Hayward (75.28 mg/100 g). The total amino acids contents per 100 g of kiwifruit (dry weight basis) were 483.97 mg (Haegeum), 453.08 mg (Hayward), 437.27 mg (Bidan) and 369.35 mg (Daeheung). The K and Ca contents of the kiwifruits ranged from 14.56~37.12 mg/L and 1.94~8.24 mg/L, respectively; however, the Fe, Mg, Zn and Cr contents all less than 1.83 mg/L. The antimicrobial activities of methanol extracts of kiwifruits against five gram positive bacteria at concentration of 2,000 mg/L in terms of inhibition diameter ranged from 8.8~12.8mm, while raged from 9.2~13.1mm against three gram negative strains of bacteria. The hyperplasia inhibition of lung cancer cells (Calus-6) by 800 mg/L kiwifruits extracts of Bidan, Haegeum, Daeheung and Hayward kiwifruits were 21.2%, 9.5%, 6.7% and 5.0%, respectively. Consequently, it was assumed that kiwifruits was rich in vitamin C, amino acids and K, and that they would therefore be useful in processed goods.

  • PDF

Enzymatic Transformation of Ginsenoside Rb1 by Lactobacillus pentosus Strain 6105 from Kimchi

  • Kim, Se-Hwa;Min, Jin-Woo;Quan, Lin-Hu;Lee, Sung-Young;Yang, Dong-Uk;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.291-297
    • /
    • 2012
  • Ginsenoside (ginseng saponin), the principal component of ginseng, is responsible for the pharmacological and biological activities of ginseng. We isolated lactic acid bacteria from Kimchi using esculin agar, to produce ${\beta}$-glucosidase. We focused on the bio-transformation of ginsenoside. Phylogenetic analysis was performed by comparing the 16S rRNA sequences. We identified the strain as Lactobacillus (strain 6105). In order to determine the optimal conditions for enzyme activity, the crude enzyme was incubated with 1 mM ginsenoside Rb1 to catalyse the reaction. A carbon substrate, such as cellobiose, lactose, and sucrose, resulted in the highest yields of ${\beta}$-glucosidase activity. Biotransformations of ginsenoside Rb1 were analyzed using TLC and HPLC. Our results confirmed that the microbial enzyme of strain 6105 significantly transformed ginsenoside as follows: Rb1${\rightarrow}$gypenoside XVII, Rd${\rightarrow}$F2 into compound K. Our results indicate that this is the best possible way to obtain specific ginsenosides using microbial enzymes from 6105 culture.

Effects of Cordyceps militaris Mycelia on Fibrolytic Enzyme Activities and Microbial Populations In vitro

  • Yeo, Joon-Mo;Lee, Shin-Ja;Shin, Sung-Hwan;Lee, Sung-Hoon;Ha, Jong-Kyu;Kim, Wan-Young;Lee, Sung-Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.364-368
    • /
    • 2011
  • An experiment was conducted to examine the effects of Cordyceps militaris mycelia on microbial populations and fibrolytic enzyme activities in vitro. C. militaris mycelia was added to buffered rumen fluid with final concentrations of 0.00, 0.10, 0.15, 0.20, 0.25 and 0.30 g/L and incubation times were for 3, 6, 9, 12, 24, 36, 48 and 72 h. At all incubation times, the supplementation of C. militaris mycelia linearly increased the number of total viable and celluloytic bacteria; maximum responses were seen with 0.25 g/L supplementation of C. militaris mycelia. The addition of C. militaris mycelia above the level of 0.20 g/L significantly (p<0.01) increased the number of total and cellulolytic bacteria compared with the control. On the other hand, the response of fungal counts to the supplementation of C. militaris mycelia showed a linear decrease; the lowest response was seen with 0.30 g/L supplementation of C. militaris mycelia. It would seem that C. militaris mycelia possess a strong negative effect on rumen fungi since the lowest level of C. militaris mycelia supplementation markedly decreased fungal counts. Carboxylmethyl cellulase activities were linearly increased by the addition of C. militaris mycelia except at 3 and 9 h incubation times. At all incubation times, the supplementation of C. militaris mycelia linearly increased the activities of xylanase and avicelase. In conclusion, the supplementation of C. militaris mycelia to the culture of mixed rumen microorganisms showed a positive effect on cellulolytic bacteria and cellulolytic enzyme activities but a negative effect on fungi.