• Title/Summary/Keyword: Microbial culture

Search Result 884, Processing Time 0.031 seconds

Analysis of Bacterial Diversity in Fermented Skate Using Culture-dependent and Culture-independent Approaches (배양 의존적 및 배양 비의존적 방법에 의한 홍어회 서식 미생물의 다양성 분석)

  • Lee, Eun-Jung;Kim, Tae-Hyung;Kim, Ha-Kun;Lee, Jung-Kee;Kwak, Hahn-Shik;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.322-328
    • /
    • 2010
  • Fermented skate is a traditional Korean food popular in Southwestern area of Korea. It has a characteristic flavor and alkaline pH. In this study we tried to determine the microbial flora in fermented skate using two different approaches. In culture-independent method, we amplified V2 region of 16S rRNA gene by PCR and cloned them into pUC18 plasmid to construct 16S rDNA fragment library. BLAST searches for the sequences obtained from this library revealed that uncultured bacterium clone 054E11.b was the most dominant flora in this fermented fish. In culture-dependent method, we diluted suspension of skate and spreaded on MRS, PCA, and MacConkey plates. We identified colonies grown on those plates by using PCR amplification of V2 region of 16S rRNA and DNA sequencing. BLAST searches of those DNA sequences resulted in totally different species with the observations from the 16S rDNA library analysis. Discrepancies of results obtained from both approaches suggest that the agar plates used in culture-dependent method may be different from the real condition of fermented skate. Therefore, results from culture-independent approach using 16S rDNA fragment library analysis may reflect real microbial flora in fermented skate.

Development of deep learning structure for complex microbial incubator applying deep learning prediction result information (딥러닝 예측 결과 정보를 적용하는 복합 미생물 배양기를 위한 딥러닝 구조 개발)

  • Hong-Jik Kim;Won-Bog Lee;Seung-Ho Lee
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.116-121
    • /
    • 2023
  • In this paper, we develop a deep learning structure for a complex microbial incubator that applies deep learning prediction result information. The proposed complex microbial incubator consists of pre-processing of complex microbial data, conversion of complex microbial data structure, design of deep learning network, learning of the designed deep learning network, and GUI development applied to the prototype. In the complex microbial data preprocessing, one-hot encoding is performed on the amount of molasses, nutrients, plant extract, salt, etc. required for microbial culture, and the maximum-minimum normalization method for the pH concentration measured as a result of the culture and the number of microbial cells to preprocess the data. In the complex microbial data structure conversion, the preprocessed data is converted into a graph structure by connecting the water temperature and the number of microbial cells, and then expressed as an adjacency matrix and attribute information to be used as input data for a deep learning network. In deep learning network design, complex microbial data is learned by designing a graph convolutional network specialized for graph structures. The designed deep learning network uses a cosine loss function to proceed with learning in the direction of minimizing the error that occurs during learning. GUI development applied to the prototype shows the target pH concentration (3.8 or less) and the number of cells (108 or more) of complex microorganisms in an order suitable for culturing according to the water temperature selected by the user. In order to evaluate the performance of the proposed microbial incubator, the results of experiments conducted by authorized testing institutes showed that the average pH was 3.7 and the number of cells of complex microorganisms was 1.7 × 108. Therefore, the effectiveness of the deep learning structure for the complex microbial incubator applying the deep learning prediction result information proposed in this paper was proven.

Measurement of Viable Cell Number in Mixed Culture Based on Microbial Respiration Rate (미생물 호흡속도에 기초한 혼합배양중의 생균수 측정)

  • Veljkoic, V.B;;C.R.Engler
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.6
    • /
    • pp.687-692
    • /
    • 1992
  • A simple method to determine viable cell numbers of each species in mixed culture was developed. The oxygen uptake rate (OUR) equals to the product of the specific OUR and the size of the microbial population. In a mixed culture, the OUR is a result of the respiration activities of each sub-population. The OUR was determined from the slope of the linear relationship between time and the decrease of dissolved oxygen concentration when aeration was stopped. The specific OUR was calculated from the slope of the viable cell number versus OUR curve. These values for C. lusitaniae at 20 and $30^{\circ}C$ were $1.36{\times}10^{-9}$ and $3.90{\times}10^{-9}$ and those for P tannoPhilus at 20 and $30^{\circ}C$ were $0.59{\times}10^{-9}$ and $1.86{\times}10^{-9}$ [(%/s)/(cells/ml)J. respectively. Using these values, viable cell numbers were calculated after the OURs of mixed culture at two temperatures were measured. A good agreement between the viable cell numbers determined by this method and by plate count was obtained.

  • PDF

Disease Suppressive Mechanisms of Antagonistic Bacteria against Phytophthorn capsici causing Phytophthora Blight of Pepper

  • Kim, Hye-Sook;Kim, Ki-Deok
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.93.2-94
    • /
    • 2003
  • In our previous studies, we selected three antagonistic bacteria, KJ1R5, KJ2C12, and KJ9C8 against Phytophthora capsici, the casual agent of Phytophthora blight of pepper. For elucidating production, root colonization, and total microbial activity were investigated. The dual culture assay was accomplished to elucidate existence of antibiotics. In this assay, any antagonistic bacteria did not inhibit growth of six important fungal plant pathogens, suggesting that these antagonists do not produce antibiotics. root surface or rhizosphere soil colonizations were examined with spontaneous rifampicin-resistant mutants equal to antagonistic ability of wild types. KJ2C12 colonized consistently rhizosphere soil while yellowish colonies of KJ1R5 and KJ9C8 well colonized root surfaces and rhizosphere soil. Total microbial activity in pots treated with the antagonistic bacteria was measured using fluorescein diacetate hydrolysis. total microbial activity of three antagonistic bacteria treatments was significantly higher than that of buffer-treated control until 4days after treatment. However, total microbial activity of treatment of three antagonistic bacteria decreased after 7 days. These results indicate that the antagonistic bacteria, KJ1R5 and KJ9C8 colonized and protected roots well against Phytophthora blight of pepper through competition of infection courts, especially competitions.

  • PDF

Development and Evaluation of a Rapid BOD Measurement System (신속 BOD 측정장치의 개발 및 시험)

  • Oh, Hyuk;Choi, Don-Soo;Jeong, Hyuk;Choi, Ju-Hwan;Kim, Hai-Dong
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-152
    • /
    • 1997
  • A rapid BOD measurement system using a microbial membrane electrode has been developed. Culture of microorganism and the preparation of microbial membrane, the effect of sample flow rate on the BOD measurement, the effect of solution pH and response characteristics of the microbial membrane electrode were investigated. The rapid BOD measurement system developed by us was connected to a personal computer and the whole BOD measurement procedures were carried out automatically. The best results were obtained when the solution flow rate was 7.8mL/min and the data were obtained 5 minutes after sample injection.

  • PDF

In vitro antimicrobial effect of the tissue conditioner containing silver nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.1
    • /
    • pp.20-24
    • /
    • 2011
  • PURPOSE. The aim of this study was to identify in vitro antimicrobial activity of the tissue conditioner containing silver nanoparticles on microbial strains, Staphylococcus aureus, Streptococcus mutans and Candida albicans. MATERIALS AND METHODS. Experimental disc samples ($20.0{\times}3.0$ mm) of tissue conditioner (GC Soft-Liner, GC cooperation, Tokyo, Japan) containing 0.1 - 3.0% silver nanoparticles (0%: control) were fabricated. Samples were placed on separate culture plate dish and microbial suspensions (100 ${\mu}L$) of tested strains were inoculated then incubated at $37^{\circ}C$. Microbial growth was verified at 24 hrs and 72 hrs and the antimicrobial effects of samples were evaluated as a percentage of viable cells in withdrawn suspension (100 ${\mu}L$). Data were recorded as the mean of three colony forming unit (CFU) numerations and the borderline of the antimicrobial effect was determined at 0.1% viable cells. RESULTS. A 0.1% silver nanoparticles combined to tissue conditioner displayed minimal bactericidal effect against Staphylococcus aureus and Streptococcus mutans strains, a 0.5% for fungal strain. Control group did not show any microbial inhibitory effect and there were no statistical difference between 24 hrs and extended 72 hrs incubation time (P > .05). CONCLUSION. Within the limitation of this in vitro study, the results suggest that the tissue conditioner containing silver nanoparticles could be an antimicrobial dental material in denture plaque control. Further mechanical stability and toxicity studies are still required.

Spatial Heterogeneity of Bacteria: Evidence from Hot Composts by Culture-independent Analysis

  • Guo, Yan;Zhang, Jinliang;Deng, Changyan;Zhu, Nengwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.1045-1054
    • /
    • 2012
  • The phylogenetic diversity of the bacteria in hot composting samples collected from three spatial locations was investigated by molecular tools in order to determine the influence of gradient effect on bacterial communities during the thermophilic phase of composting swine manure with rice straw. Total microbial DNA was extracted and bacterial near full-length 16S rRNA genes were subsequently amplified, cloned, restriction fragment length polymorphism-screened and sequenced. The superstratum sample had the highest microbial diversity among the three samples which was possibly related to the surrounding conditions of the sample resulting from the location. The results showed that the sequences related to Bacillus sp. were most common in the composts. In superstratum sample, 45 clones (33%) and 36 clones (27%) were affiliated with the Bacillus sp. and Clostridium sp., respectively; 74 clones (58%) were affiliated with the Clostridium sp. in the middle-level sample; 52 clones (40%) and 29 clones (23%) were affiliated with the Clostridium sp. and Bacillus sp. in substrate sample, respectively. It indicated that the microbial diversity and community in the samples were different for each sampling site, and different locations of the same pile often contained distinct and different microbial communities.

Valistatin (3-Amino-2-Hydroxy-4-Phenylbutanoyl-Valyl-Valine), a New Aminopeptidase M Inhibitor, Produced by Streptomyces sp. SL20209

  • Kho, Ying-Hee;Ko, Hack-Ryong;Chun, Hyo-Kon;Jung, Myung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.36-40
    • /
    • 1995
  • Valistatin, a new inhibitor of aminopeptidase M(AP-M) was discovered in the culture broth of Streptomyces sp. SL20209 isolated from a soil sample. The inhibitor was purified by extraction with n-butanol and the various column chromatographies, and then isolated as whitish powder. The $^1 H-and ^1 H, ^1 H-COSY$ NMR studies, amino acid analysis, and fragmentation patterns by FAB-MS suggested the presence of one 3-amino-2-hydroxy-4-phenylbutanoic acid and two valine residues in the inhibitor. Thus, the structure of valistatin was determined as 3-amino-2-hydroxy-4-phenylbutanoyl-valyl-valine. Valistatin has the molecular formular $C_20H_31N_3 O_5$ (MW 394), and its $IC_50$ value against hog kidney AP-M was determined to be 3.12 $mu g/ml$.

  • PDF

Screening of Microorganisms Producing Esterase for the Production of $(R)-\beta-Acetylmercaptoisobutyric$ Acid from Methyl $(R,S)-\beta-Acetylmercaptoisobutyrate$

  • Gokul Boyapati;Lee Je-Hyuk;Song Ki-Bang;Panda T.;Rhee Sang-Ki;Kim Chul-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.1
    • /
    • pp.57-60
    • /
    • 2000
  • $(R)-\beta-acetylmercaptoisobutyric$ acid (RAM), a chiral compound, is an important intermediate for the chemical synthesis of various antihypertensive and congestive heart failure drugs. Microorganisms capable of converting $(R,S)-\beta-acetylmercaptoisobutyric$ acid ((R,S)-ester) to RAM were screened from soil microorganisms. A strain of Pseudomonas sp. 1001 screened from a soil sample was selected to be the best. Cells showed an activity of 540 U/mL from culture broth and the enzyme was thermostable up to $70^{\circ}C$. This strain could produce RAM asymmetrically from (R,S)-ester.

  • PDF

Optimization of Medium Composition and Cultivation Parameters for Fructosyltransferase Production by Penicillium aurantiogriseum AUMC 5605

  • Farid, Mohamed Abdel-Fattah Mohamed;Kamel, Zinat;Elsayed, Elsayed Ahmed;El-Deen, Azza Mohamed Noor
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.3
    • /
    • pp.209-218
    • /
    • 2015
  • Fructooligosaccharides have been mainly produced by microbial fructosyltransferases (FTase) enzymes. The present work focuses on the optimization of medium composition and cultivation parameters affecting FTase produced by Penicillium aurantiogriseum AUMC 5605 in shake flask cultivation. FTase production was optimized in two steps using DeMeo's fractional factorial design. A 1.46-fold increase in FTase production (105.4 U/mL) was achieved using the optimized culture medium consisting of (g/L): sucrose, 600; yeast extract, 10; $K_2HPO_4$, 5; $MgSO_4{\cdot}7H_2O$, 0.5; $(NH_4)_2SO_4$, 1.0 and KCl, 0.5. The obtained results showed that the maximum FTase enzyme activity was produced at initial cultivation pH values ranging from 6.0-6.5, at agitation speed of 200 rpm and using vegetative fungal cells as inoculum. Moreover, results showed that optimization of medium composition and some cultivation parameters resulted in an increase of about 93.7% in the enzyme activity than the nonoptimized cultivation conditions after 96 h of cultivation. Additionally, maximum production and specific production rates recorded 2340 U/L/h and 102 U/L/h/g cells, respectively.