• Title/Summary/Keyword: Microbial communities

Search Result 429, Processing Time 0.031 seconds

Patterns of Utilizing Sole Carbon Source by Soil Microbes in a Forest Soil (토양 세균 군집의 유일탄소원 이용에 의한 지문분석)

  • 송인근;최영길;안영범;신규철;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.65-71
    • /
    • 1999
  • This study was carried out utilzing ability of sole carbon sources in soil microbial communities used by Biolog GN microplate. Cluster analysis showed that soil microbial cornmuties were categorized into three groups as forest, non-forest soil and naked soil of microbial group. Soil microbial commutites in a forest soil of Qirercus mongoIica was divided into another group microbial communites in Qirercus dendata vegetation soil and Pinus dnzsqlora vegetation soil by Multidimensional scaling(MDS). Generally, sole carbon utilzing abilties were higher in order of polymer, amino acids and carboxylic acids, but it was lower in amides substrates carbon group. From the result: it was supposed that metabolic diversity of microbial communities was corresponded to vegetation succession.

  • PDF

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang;Ying Qi;Jiani Liu;Penghua Gao;Feiyan Huang;Lei Yu;Hairu Chen
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.

Composition and functional diversity of bacterial communities during swine carcass decomposition

  • Michelle Miguel;Seon-Ho Kim;Sang-Suk Lee;Yong-Il Cho
    • Animal Bioscience
    • /
    • v.36 no.9
    • /
    • pp.1453-1464
    • /
    • 2023
  • Objective: This study investigated the changes in bacterial communities within decomposing swine microcosms, comparing soil with or without intact microbial communities, and under aerobic and anaerobic conditions. Methods: The experimental microcosms consisted of four conditions: UA, unsterilized soil-aerobic condition; SA, sterilized soil-aerobic condition; UAn, unsterilized soil-anaerobic condition; and San, sterilized soil-anaerobic condition. The microcosms were prepared by mixing 112.5 g of soil and 37.5 g of ground carcass, which were then placed in sterile containers. The carcass-soil mixture was sampled at day 0, 5, 10, 30, and 60 of decomposition, and the bacterial communities that formed during carcass decomposition were assessed using Illumina MiSeq sequencing of the 16S rRNA gene. Results: A total of 1,687 amplicon sequence variants representing 22 phyla and 805 genera were identified in the microcosms. The Chao1 and Shannon diversity indices varied in between microcosms at each period (p<0.05). Metagenomic analysis showed variation in the taxa composition across the burial microcosms during decomposition, with Firmicutes being the dominant phylum, followed by Proteobacteria. At the genus level, Bacillus and Clostridium were the main genera within Firmicutes. Functional prediction revealed that the most abundant Kyoto encyclopedia of genes and genomes metabolic functions were carbohydrate and amino acid metabolisms. Conclusion: This study demonstrated a higher bacteria diversity in UA and UAn microcosms than in SA and SAn microcosms. In addition, the taxonomic composition of the microbial community also exhibited changes, highlighting the impact of soil sterilization and oxygen on carcass decomposition. Furthermore, this study provided insights into the microbial communities associated with decomposing swine carcasses in microcosm.

Impact of transgenic AFPCHI (Cucumis melo L. Silver Light) fungal resistance melon on soil microbial communities and enzyme activities

  • Bezirganoglu, Ismail;Uysal, Pinar
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.156-163
    • /
    • 2017
  • A greenhouse experiment was conducted for evaluation of ecological effects of transgenic melon plants in the rhizospheric soil in terms of soil properties, enzyme activities and microbial communities. Organic matter content of soil under transgenic melon plants was significantly higher than that of soil with non-transgenic melon plants. Significant variations were observed in organic matter, total P and K in soil cultivation with transgenic melon plants. There were also significant variations in the total numbers of colony forming units of fungi, actinomycetes and bacteria between soils treated with transgenic and non-transgenic melon plants. Transgenic and non-transgenic melon significantly enhanced several enzymes activities including urease, acid phosphatase, alkalin phosphatase, arysulphtase, ${\beta}$ glucosidase, dehydrogenase, protease and catalase. Soil polyphenoloxidase activity of $T_1$ transgenic melon was lower than that of $T_0$ transgenic melon and a non-melon plant during the same period. The first generation transgenic melon plants ($T_0$) showed significantly greater (p<0.05) effect on the activitiy of arylsulfatase, which increased from $2.540{\times}10^6CFU\;g^{-1}$ (control) to $19.860{\times}10^6CFU\;g^{-1}$ ($T_0$). These results clearly indicated that transgenic melon might change microbial communities, enzyme activities and soil chemical properties.

Two-year field monitoring shows little evidence that transgenic potato containing ABF3 significantly alters its rhizosphere microbial community structure

  • Nam, Ki Jung;Kim, Hyo-Jeong;Nam, Kyong-Hee;Pack, In Soon;Kim, Soo Young;Kim, Chang-Gi
    • Journal of Ecology and Environment
    • /
    • v.41 no.3
    • /
    • pp.99-106
    • /
    • 2017
  • Background: Plants over-expressing Arabidopsis ABF3 (abscisic acid-responsive element-binding factor 3) have enhanced tolerance to various environmental stresses, especially drought. Using terminal restriction fragment length polymorphism (T-RFLP) analysis, we compared the rhizosphere-associated structures of microbial communities for transgenic potato containing this gene and conventional "Jopoong" plants. Results: During a 2-year field experiment, fungal richness, evenness, and diversity varied by year, increasing in 2010 when a moderate water deficit occurred. By contrast, the bacterial richness decreased in 2010 while evenness and diversity were similar in both years. No significant difference was observed in any indices for either sampling time or plant line. Although the composition of the microbial communities (defined as T-RF profiles) changed according to year and sampling time, differences were not significant between the transgenic and control plants. Conclusions: The results in this study suggest that the insertion of ABF3 into potato has no detectable (by current T-RFLP technique) effects on rhizosphere communities, and that any possible influences, if any, can be masked by seasonal or yearly variations.

Comparative Analysis of Gut Microbial Communities in Children under 5 Years Old with Diarrhea

  • Wen, Hongyu;Yin, Xin;Yuan, Zhenya;Wang, Xiuying;Su, Siting
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.652-662
    • /
    • 2018
  • Diarrhea is a global disease with a high morbidity and mortality rate in children. In this study, 25 fecal samples were collected from children under 5 years old. Seven samples had been taken from healthy children without diarrhea and marked as the healthy control group; eight samples had been sampled from children with diarrhea caused by dyspepsia and defined as the non-infectious group; and ten samples had been taken from children with diarrhea induced by intestinal infections and identified as the infectious group. We detected the microbial communities of samples by using high-throughput sequencing of 16S rRNA genes. The proportion of aerobic and facultative anaerobic microbes in samples of the infectious group was much higher than in the non-infectious group. In addition, the relative abundance of Enterococcus in the healthy control group was significantly higher than in the non-infectious group and infectious group. This can be used as a potential diagnostic biomarker for diarrhea.

Analysis of Soil Microbial Communities Formed by Different Upland Fields in Gyeongnam Province

  • Kim, Min Keun;Ok, Yong Sik;Heo, Jae-Young;Choi, Si-Lim;Lee, Sang-Dae;Shin, Hyun-Yul;Kim, Je-Hong;Kim, Hye Ran;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • The present study investigated variations in soil microbial communities by fatty acid methyl ester (FAME) and the chemical properties at 24 sites of upland soils in Gyeongnam Province. The electrical conductivity of the soil under potato cultivation was significantly higher than those of the red pepper and soybean soils (p < 0.05). The gram-negative bacteria community in potato soil was significantly lower than those in the garlic and soybean soils (p < 0.05). The communities of actinomycetes and arbuscular mycorrhizal fungi in the red pepper soil were significantly higher than those in the potato soil (p < 0.05). In addition, the cy17:0 to 16:$1{\omega}7c$ ratio was significantly lower in red pepper, soybean, and garlic soils compared with potato soil, indicating that microbial stress decreased. Consequently, differences in soil microbial community were highly associated with cultivated crop species, and this might be resulted from the difference in soil chemical properties.

Development, Structure, and Diversity of Microbial Lotic Calcareous Mat Communities

  • Bang, Sookie S.;Anderson, Cynthia M.;Bergmann, David J.;Sieverding, Heidi L.;Flanegan, Amy L.;Braaten, Amanda S.;Masteller, Amanda R.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.118-118
    • /
    • 2008
  • The phylogenetic diversity of microbial communities in calcareous mats from Spearfish Creek, a freshwater stream located in the Black Hills of South Dakota, was examined using PCR-based 16S rDNA sequence analysis. In this study, two types of calcareous mats were compared: mature mats formed on the natural substrate of rock surfaces and developing mats on an artificial substrate of glass slides. Among 63 unique isolates from a clone library of 16S rRNA genes from mature mat samples, there were 8 phyla of Bacteria represented. The predominant phylum was Proteobacteria (48%), with the $\beta$ subclass being the largest group. Denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes from slide samples collected at intervals for four months showed considerable diversity of the microbial community from the earliest stages of community development. Amplicons isolated from DGGE gels and sequenced indicated that community succession has occurred without increasing microbial diversity. However, light microscopic analysis revealed a significant increase in microbial cell density throughout the community development. Scanning electron microscopy of mat samples provides evidence that diatoms are also important members of calcareous mat communities.

  • PDF

Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 지형과 미생물 군집의 관계)

  • Lee, Young-Han;Ahn, Byung-Koo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1158-1163
    • /
    • 2011
  • The present study was aimed to evaluate the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 20 sites in Gyeongnam Province. The soil microbial biomass carbon content of fan and valley $1,266mg\;kg^{-1}$ was higher than alluvial plain $578mg\;kg^{-1}$ (p<0.05). In addition, The dehydrogenase activity of fan and valley $204{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ was higher than alluvial plain $93{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in the fan and valley paddy soils were significantly higher than those in the alluvial plain paddy soils (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the fan and valley and alluvial plain in paddy soils.

Combined Application Effects of Arbuscular Mycorrhizal Fungi and Biochar on the Rhizosphere Fungal Community of Allium fistulosum L.

  • Chunxiang Ji;Yingyue Li;Qingchen Xiao;Zishan Li;Boyan Wang;Xiaowan Geng;Keqing Lin;Qing Zhang;Yuan Jin;Yuqian Zhai;Xiaoyu Li;Jin Chen
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1013-1022
    • /
    • 2023
  • Arbuscular mycorrhizal fungi (AMF) are widespread soil endophytic fungi, forming mutualistic relationships with the vast majority of land plants. Biochar (BC) has been reported to improve soil fertility and promote plant growth. However, limited studies are available concerning the combined effects of AMF and BC on soil community structure and plant growth. In this work, a pot experiment was designed to investigate the effects of AMF and BC on the rhizosphere microbial community of Allium fistulosum L. Using Illumina high-throughput sequencing, we showed that inoculation of AMF and BC had a significant impact on soil microbial community composition, diversity, and versatility. Increases were observed in both plant growth (the plant height by 8.6%, shoot fresh weight by 12.1%) and root morphological traits (average diameter by 20.5%). The phylogenetic tree also showed differences in the fungal community composition in A. fistulosum. In addition, Linear discriminant analysis (LDA) effect size (LEfSe) analysis revealed that 16 biomarkers were detected in the control (CK) and AMF treatment, while only 3 were detected in the AMF + BC treatment. Molecular ecological network analysis showed that the AMF + BC treatment group had a more complex network of fungal communities, as evidenced by higher average connectivity. The functional composition spectrum showed significant differences in the functional distribution of soil microbial communities among different fungal genera. The structural equation model (SEM) confirmed that AMF could improve the microbial multifunctionality by regulating the rhizosphere fungal diversity and soil properties. Our findings provide new information on the effects of AMF and biochar on plants and soil microbial communities.