• Title/Summary/Keyword: Microbial Protease

Search Result 165, Processing Time 0.027 seconds

Streptomyces griseus HH1, An A-factor Deficient Mutant Produces Diminished Level of Trypsin and Increased Level of Metalloproteases

  • Kim, Jung-Mee;Hong, Soon-Kwang
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.160-168
    • /
    • 2000
  • A-factor I a microbial hormone that can positively control cell differentiation leading to spore formation and secondary metabolite formation in Streptomyces griseus. to identify a protease that is deeply involved in the morphological and physiological differentiation of Streptomyces, the proteases produced by Streptomyces griseus IFO 13350 and its A-factor deficient mutant strain, Streptomyces griseus HH1, as well as Streptomyces griseus HH1 transformed with the afsA gene were sturdied. In general Streptomyces griseus showed a higher degree of cell growth and protease activity in proportion to its ability to produce a higher amount of A-factor. In particular, the specific activity of the trypsin of Streptomyces griseus IFO 13350 was greatly enhanced more than twice compared with that of Streptomyces griseus HH1 in the later stage of growth. The specific activity of the metalloprotease of Streptomyces griseus HH1 was greatly enhanced more than twice compared with that of Streptomyces griseus IFO 13350, and this observation was reversed in the presence of thiostreptione, However, Streptomyces griseus HH1 transformed with the afsA gene showed a significantly decreased level of trypsin and metalloprotease activity compared with that of the HH1 strain. There was no significant difference between Streptomyces griseus IFO 13350 and HH1 strain in their chymotrypsin and thiol protease activity, yet the level of leu-amionpeptidase activity was 2 times higher in Streptomyces griseus HH1 than in strain IFO 13350 . Streptomyces griseus HH1 harboring afsA showed a similar level of enzyme activity , however, all the three protease activities sharply increased and the thiol protease activity was critically increased at the end of the fermentation. When a serine protease inhibitor, pefabloc SC, and metalloprotease inhibitor, EDTA, were applied to strain IFO 13350 to examine the in vivo effects of the protease inhibitors on the morpholofical differentiation, the formation of aerial meycelium and spores was delayed by two or three days.

  • PDF

The Effect of Gingseng Saponins on Microbial Enzyme Activity (인삼 Saponin이 미생물의 효소활성에 미치는 영향)

  • Jo, Seong-Hwan;Jo, Han-Ok;Park, Hong-Gu
    • Journal of Ginseng Research
    • /
    • v.3 no.2
    • /
    • pp.144-155
    • /
    • 1979
  • In order to investigate biochemical effects of ginseng saponin on microbial enzyme activity, Aspergillus oryxae-143 and Aspergillus niger-40, which were selected from various sources of samples and were the highest enzyme producing mold strains, were grown in the medium containing various saponin concentration (0mg%, l0mg%, 50mg%, l00mg%, 150mg% and 300mg%). The enzyme activity (amylase, protease) was found most active when the saponin was added in the culture media with the concentration of l0mg%∼l00mg%. But it seemed that the action of microbial enzyme was inhibited by adding more than 300mg% of saponin.

  • PDF

Cultivable Microbial Diversity in Domestic Bentonites and Their Hydrolytic Enzyme Production

  • Seo, Dong-Ho;Cho, Eui-Sang;Hwang, Chi Young;Yoon, Deok Jun;Chun, Jeonghye;Jang, Yujin;Nam, Young-Do;Park, So-Lim;Lim, Seong-Il;Kim, Jae-Hwan;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.125-131
    • /
    • 2019
  • We have isolated and identified 72 bacterial strains from four bentonite samples collected at the mining areas located in Gyeongsangbuk-do, Republic of Korea, and measured their hydrolytic enzyme (${\alpha}$-amylase, protease, and cellulase) activities to identify the isolates with industrial-use potential. Most of the isolates belonged to the Bacillaceae, with minor portions being from the Paenibacillaceae, Micrococcaceae, and Bacillales Family XII at the family level. Of the strains isolated, 33 had extracellular ${\alpha}$-amylase activity, 30 strains produced cellulase, and 35 strains produced protease. Strain MBLB1268, having the highest ${\alpha}$-amylase activity, was identified as Bacillus siamensis ($0.38{\pm}0.06U/ml$). Bacillus tequilensis MBLB1223, isolated from Byi33-b, showed the highest cellulase activity ($0.26{\pm} 0.04U/ml$), whereas Bacillus wiedmannii MBLB1197, isolated from Zdb130-b, exhibited the highest protease activity ($54.99{\pm}0.78U/ml$). These findings show that diverse bacteria of the Bacillaceae family adhere to and exist in bentonite and are potential sources of industrially useful hydrolytic enzymes.

Analysis of Producing of Thermostable Alkaline Protease using Thermoactinomyces sp. E79 (Thermoactinomyces sp. E79를 이용한 내열성 Alkaline 단백질 분해효소 생산:환경인자의 영향)

  • 정상원;박성식;박용철;오태광
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.3
    • /
    • pp.167-171
    • /
    • 2000
  • Analysis of Production of Thermostable Alkaline Protease using Thermoactinomyces sp. E79. Jung, Sang Won, Sung-Sik Park, Yong-Cheol Park" Tae Kwang Oh2, and Jin-Ho Seo*, Department of Food Science and Technology, Seoul National University, Suwon 441-744, Korea, 1lnterdisciplinary program [or Biochemical Engineering & Biotechnology, Seoul National Univer5it}~ Seoul 151 "7421 Koreal 2Microbial Enzyme RU, Korea Research Institute of Bioscience & Biotechnology, Po. Box 1151 Yusong, Taejon 305"6001 Korea - This research was undertaken to analyze fermentation properties of Thermoactinomyces sp. E79 for production of a thermostable alkaline protease, which is able to specifically hydrolyze defatted soybean meal (DSM) to amino acids. TIle optimum pH for cell growth and protease production was pH 6.7, Thermoactinomyces sp. E79 did not grow at pHlO Among carbon sources tested, soluble starch was the best for protease production, while glucose repressed protease production. Tryptone was found to be the best nitrogen source for cell growth and soytone was good tor protease production. Oxygen transfer rate played an important role in producing thermostable alkaline protease. Ma'<..imum values of 6.58 glL of dry cell weight and 43.0 UJmL of protease activity were obtained in a batch fermentation using a 2.5 L jar fermentor at 1.93 X 102 hr-l of volumetric oxygen transfer coeff'jcient (kLa). Addition of 200 mgIL humic acid to the growth medium resulted in 1.64 times higher protease activity and 1.77 times higher cell growth than the case without humic acid addition.

  • PDF

Distribution and Activities of Hydrolytic Enzymes in the Rumen Compartments of Hereford Bulls Fed Alfalfa Based Diet

  • Lee, S.S.;Kim, C.-H.;Ha, J.K.;Moon, Y.H.;Choi, N.J.;Cheng, K.-J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1725-1731
    • /
    • 2002
  • The distribution and activities of hydrolytic enzymes (cellulolyti, hemicellulolytic,pectinolytic and others) in the rumen compartments of Hereford bulls fed 100% alfalfa hay based diets were evaluated. The alfalfa proportion in the diet was gradually increased for two weeks. Whole rumen contents were processed into four fractions: Rumen contents including both the liquid and solid fractions were homogenized and centrifuged, and the supernatant was assayed for enzymes located in whole rumen contents (WRE); rumen contents were centrifuged and the supernatant was assayed for enzymes located in rumen fluids (RFE); feed particles in rumen contents were separated manually, washed with buffer, resuspended in an equal volume of buffer, homogenized and centrifuged and supernatant was assayed for enzymes associated with feed particles (FAE); and rumen microbial cell fraction was separated by centrifugation, suspended in an equal volume of buffer, sonicated and centrifuged, and the supernatant was assayed for enzymes bound with microbial cells (CBE). It was found that polysaccharide-degrading proteins such as $\beta$-1,4-D-endoglucanase, $\beta$-1,4-D-exoglucanase, xylanase and pectinase enzymes were located mainly with the cell bound (CBE) fraction. However, $\beta$-D-glucosidase, $\beta$-D-fucosidase, acetylesterase, and $\alpha$-L-arabinofuranosidase were located in the rumen fluids (RFE) fraction. Protease activity distributions were 37.7, 22.1 and 40.2%, and amylase activity distributions were 51.6, 18.2 and 30.2% for the RFE, FAE and CBE fractions, respectively. These results indicated that protease is located mainly in rumen fluid and with microbial cells, whereas amylase was located mainly in the rumen fluid.

Identification of Enteric Bacteria from Nephila clavata (한국산 무당거미(Nephila clavata)에서 분리한 장내 세균의 동정)

  • 문은영;오현우;맹필재;배경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Spiders are carnivores that prey upon insects and other small arthropods through digestion of food outside the body. Although spider poison may contain proteolytic enzymes, these are thought to play an insignificant role in actual digestion. The source of active proteolytic enzymes can be either the digestive tract cells of spider, or natural microbial flora in the digestive tract of spider. In this study, digestive tracts from the spider, Nephila clavata, were screened for bacteria that have protease or lipase activity. A total of $10^3-10^5$ CFU was recovered from a spider and more than 90% of them showed protease and lipase activity respectively. Of the microbial isolates, 63.3% showed protease or lipase activity, and 50% of these showed both protease and lipase activity. Some of the isolates were characterized using a battery of chemical, phenotypic and genotypic methods. Eleven Gram negative bacteriaa (Acinetobacter calcoaceticus, A. haemolyticus, Alcaligenes faecalis, Cedecea davisae, C. neteri, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas fluorescens, Serratia marcescens, Stenotrophomonas maltophilia, Suttonella indologenes) and 11 Gram positive bacteria (Bacillus cereus, B. coagulans, B. pasteurii, B. thuringiensis, Cellulomonas flavigena, Corynebacterium martruchotii, Enterococcus durans, E. faecalis, Micrococcus luteus, Staphylococcus hominis, S. sciuri) were identified.

  • PDF

Changes in Microflora and Enzymes Activities of Traditional Kochujang Prepared with Various Raw Materials (담금원료에 따른 전통식 고추장의 숙성 중 미생물과 효소력의 변화)

  • Shin, Dong-Hwa;Kim, Dong-Han;Choi, Ung;Lim, Mi-Sun;An, Eun-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.901-906
    • /
    • 1997
  • In order to reproduce and improve quality of traditional kochujang, various raw materials were added to prepare kochujang by replacing part of the glutinous rice. Chemical composition, microbial characteristics and enzyme activities were investigated during fermentation. Crude protein and salt contents of kochujang did not change significantly during fermentation, but moisture contents increased linearly. The pH and titratable acidity of kochujang changed little in garlic added group. The viable cell counts of aerobic bacteria and yeasts in the kochujang increased until 60 days of fermentation and then decreased slowly except for the garlic added group in which they increased during the last period of fermentation. Aerobic bacterial count did not show any remarkable differences among the samples and slowly decreased after 60 days of fermentation. The activities of liquefying and saccharifying amylases decreased until 45 days, but increased at 60th day. Acidic protease activities of each group were strong during the initial period, but neutral protease showed the highest activity from the 30 to 45 days of fermentation. Protease activities increased by addition of soy sauce, Chinese matrimony vine and purple sweet potato.

  • PDF

Studies on the processing of rapid fermented anchovy prepared with low salt contents by adapted microorganism. -2. Thermodynamic characteristics of microbial extracellular protease isolated from fermented fish paste- (미생물을 이용한 저식염 멸치젓의 속성발효에 관한 연구 -2. 젓갈에서 분리한 단백질분해효소의 열역학적 특성-)

  • Cha, Yong-Jun;Lee, Eung-Ho
    • Applied Biological Chemistry
    • /
    • v.33 no.4
    • /
    • pp.325-329
    • /
    • 1990
  • This study was undertaken to determine thermodynamic characteristics of B. subtilis p-4 and B. licheniformis p-5 proteases isolated from fermented anchovy paste. $K_m$ values of two proteases for casein as a substrate were 0.38mM in p-4 protease and 0.18mM in p-5 protease, respectively. Denaturation constants($K_D$) of p-4 and p-5 proteases were $12.2{\times}10^{-5}/sec\;and\;19.0{\times}10^{-5}/sec\;at\;40^{\circ}C,\;and\;35.7{\times}10^{-5}/sec\;and\;46.3{\times}10^{-5}/sec\;at\;50^{\circ}C$, respectively. Activation energies($E_a$) of p-4 and p-S pmteases were 19.6 Kcal/mole and 15.2kcal/mole, respectively. Free energy of activation(${\Delta}G^*$), activation enthalpy(${\Delta}H^*$) and activation entropy(${\Delta}S^*$) at $40^{\circ}C$ were 23.21Kcal/mole, 18.98Kcal/mole and -13.50 eu, respectively for p-4 protease and 22.93Kcal/mo1e, 14.58Kcal/mole and -26.68 eu, respectively for p-5 protease. The major amino acids in p-4 protease(151 residues of amino acid) were Gly, Glu, Pro, Asp, Ser, Ala, Lys and Leu, while those in p-5 protease(247 residues of amino acid) were Gly, Glu, Asp, Ala and Leu. It may be concluded that heat denaturation of two proteases showed liner regression curve and p-5 protease was more sensitive to heat than p-4 protease.

  • PDF

Effect of Combined Use of various Anti-microbial Materials on Brewing of Low Salted Kochujang (저식염 고추장 양조시 항균물질 혼합첨가의 영향)

  • Park, Seon-Ju;Kim, Dong-Han
    • Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.287-294
    • /
    • 2007
  • Effect of combined use of anti-microbial materials, such as ethanol, mustard and chitosan, on the quality of low salted kochujang was investigated during fermentation at $20^{\circ}C$ for 12 weeks. Viable cells of yeast increased remarkably during fermentation, but increasing ratio was significantly low in ethanol-mustard added kochujang. Activity of ${\beta}-amylase$ was high in anti-microbial material added kochujang, whereas ${\alpha}-amylase$ and protease activities were low in those groups. Water activity decreased during fermentation with being low in the control kochujang prepared with normal-salt without anti-microbial materials. Hunter L-, a- and b-values of kochujang increased during fermentation, and the degree of increase in total color difference $({\Delta}E)$ was low in ethanol added kochujang. Titratable acidity of kochujang was decreased in anti-microbial materials added group at late aging period, and oxidation-reduction potential was low in the control kochujang. Total sugar and reducing sugar contents of kochujang were high in ethanol-mustard added kochujang. Ethanol contents of kochujang increased at late aging period, with high values in ethanol-chitosan added kochujang. Amino nitrogen content increased during middle of fermentation, and ammonia nitrogen content of kochujang decreased in ethanol-mustard-chitosan added group during fermentation. After 12 weeks fermentation, sensory results showed that ethanol or ethanol-mustard added kochujang were the highest in color and flavor with the highest overall acceptability.

Relation between Chemical Properties and Microbial Activities in Soils from Reclaimed Tidal Lands at South-western Coast Area in Korea

  • Park, Mi-Na;Go, Gang-Seuk;Kim, Chang-Hwan;Bae, Hui-Su;Sa, Tongmin;Choi, Joon-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.262-270
    • /
    • 2015
  • The scientific information between microbial community and chemical properties of reclaimed tidal soil is not enough to understand the land reclamation process. This study was conducted to investigate the relation between chemical properties and microbial activities of soils from reclaimed tidal lands located at south-western coastal area (42 samples from Goheuong, Samsan, Bojun, Kunnae, Hwaong and Yeongsangang sites). Most of the reclaimed soils showed chemical characteristics as salinity soil based on EC. Only $Na^+$ in exchangeable cation was dependent on EC of reclaimed soil, whereas other cations such as $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were independent on EC. The mesophilic bacteria decreased with an increase in EC of soil. Microbial population increased with soil organic content in the range of $0{\sim}10g\;kg^{-1}$ and dehydrogenase activity less than $100{\mu}g-TPF\;g^{-1}h^{-1}$. Microbial population of soils from reclaimed tidal lands was closely related to the microbial community containing hydrolytic enzyme activities of cellulase, amylase, protease, and lipase.