• 제목/요약/키워드: Microbial Biotechnology

검색결과 2,188건 처리시간 0.032초

광합성세균에 의한 미생물막의 형성

  • 오광근;이철우;전영중;이재홍
    • 한국미생물·생명공학회지
    • /
    • 제24권6호
    • /
    • pp.733-737
    • /
    • 1996
  • The formation of microbial films(biofilm) by a non-sulfur phototrophic bacteria, Rhodopseudomonas capsulata, on inorganic media was studied. Porous ceramic beads(PCB) were superior to other immobilizing media for the biofilm formation in a packed-bed reactor. It was found that the formation of microbial films favored a lower hydraulic retention time, showing a higher ratio of cells attatched to the media to those suspended in the solution. The cell concentration in the biofilm reactor was as high as 11,400mg/l, which is 8-folds of the cell concentration in an ordinary suspended treatment. It was observed that the formation of micribial film by R. capsulata followed a general serial process of cell attachment, microcolony formation, and biofilm formation. The microbial films thus formed was very stable even for an extremely high volumetric BOD loading rate of 15gBOD/l day. The scanning electron micrographs of the microbial films showed that the cells were attached to both the surface and pores of the media.

  • PDF

Asparagine Residue at Position 71 is Responsible for Alkali-Tolerance of the Xylanase from Bacillus Pumilus A-30

  • Liu, Xiang-Mei;Qi, Meng;Lin, Jian-Aiang;Wu, Zhi-Hong;Qu, Yin-Bo
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권3호
    • /
    • pp.534-538
    • /
    • 2001
  • The xynA gene encoding an alikali-tolerant endo-1,4-${\beta}$-xylanase (XYN) was cloned from the alkalophilic Bacillus pumilus A-30. The nucleotide sequence of a 974-bp DNA fragment containing the xynA was determined. An ORF of 684 nucleotides that encoded a protein of 228 amino aicds was detected. Asparagine-71 of XYN from B. Pumilus A-30 showed to be highly conservative in alkaline xylanases of family G/11, upon comparing the amino acid sequences of 17 family G/11 xylanases. Site-directed mutation of N71D of the xynA gene resulted in a decrease of 12.4% in the specific acitivity and a significant decline in the enzyme activity in the alkaline pH range.

  • PDF

Ethanol Production from Artificial Domestic Household Waste Solubilized by Steam Explosion

  • Nakamura, Yoshitoshi;Sawada, Tatsuro
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권3호
    • /
    • pp.205-209
    • /
    • 2003
  • Solubilization of domestic household waste through Steam explosion with Subsequent ethanol production by the microbial saccharifitation and fermentation of the exploded product was studied. The effects of steam explosion on the changes of the density, viscosity, pH, and amounts of extractive components in artificial household waste were determined. The composition of artificial waste used was similar to leftover waste discharged from a typical home in Japan. Consecutive microbial saccharification and fermentation, and simultaneous microbial saccharification and fermentation of the Steam-exploded product were attempted using Aspergillus awamori, Trichoderma viride, and Saccharomyces cerevisiae; the ethanol yields of each process were compared. The highest ethanol yield was obtained with simultaneous microbial saccharification and fermentation of exploded product at a steam pressure of 2 MPa and a steaming time of 3 min.

Microbial Degradation and Toxicity of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine

  • Khan, Muhammad Imran;Lee, Jaejin;Park, Joonhong
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1311-1323
    • /
    • 2012
  • In the present work, current knowledge on the potential fate, microbial degradation, and toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was thoroughly reviewed, focusing on the toxicological assessment of a variety of potential RDX degradation pathways in bacteria and fungi. The present review on microbial degradation pathways and toxicities of degradation intermediates suggests that, among aerobic RDX degradation pathways, the one via denitration may be preferred in a toxicological perspective, and that among anaerobic pathways, those forming 4-nitro-2,4-diazabutanal (NDAB) via ring cleavage of 1-nitroso-3,5-dinitro-1,3,5-triazinane (MNX) may be toxicologically advantageous owing to its potential mineralization under partial or complete anoxic conditions. These findings provide important information on RDX-degrading microbial pathways, toxicologically most suitable to be stimulated in contaminated fields.

Biocontrol of Pectobacterium carotovorum subsp. carotovorum Using Bacteriophage PP1

  • Lim, Jeong-A;Jee, Samnyu;Lee, Dong Hwan;Roh, Eunjung;Jung, Kyusuk;Oh, Changsik;Heu, Sunggi
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1147-1153
    • /
    • 2013
  • Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

Deciphering Diversity Indices for a Better Understanding of Microbial Communities

  • Kim, Bo-Ra;Shin, Jiwon;Guevarra, Robin B.;Lee, Jun Hyung;Kim, Doo Wan;Seol, Kuk-Hwan;Lee, Ju-Hoon;Kim, Hyeun Bum;Isaacson, Richard E.
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2089-2093
    • /
    • 2017
  • The past decades have been a golden era during which great tasks were accomplished in the field of microbiology, including food microbiology. In the past, culture-dependent methods have been the primary choice to investigate bacterial diversity. However, using culturein-dependent high-throughput sequencing of 16S rRNA genes has greatly facilitated studies exploring the microbial compositions and dynamics associated with health and diseases. These culture-independent DNA-based studies generate large-scale data sets that describe the microbial composition of a certain niche. Consequently, understanding microbial diversity becomes of greater importance when investigating the composition, function, and dynamics of the microbiota associated with health and diseases. Even though there is no general agreement on which diversity index is the best to use, diversity indices have been used to compare the diversity among samples and between treatments with controls. Tools such as the Shannon-Weaver index and Simpson index can be used to describe population diversity in samples. The purpose of this review is to explain the principles of diversity indices, such as Shannon-Weaver and Simpson, to aid general microbiologists in better understanding bacterial communities. In this review, important questions concerning microbial diversity are addressed. Information from this review should facilitate evidence-based strategies to explore microbial communities.

Cloning, Expression, and Characterization of Protease-resistant Xylanase from Streptomyces fradiae var. k11

  • Li, Ning;Yang, Peilong;Wang, Yaru;Luo, Huiying;Meng, Kun;Wu, Nigfeng;Fan, Yunliu;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.410-416
    • /
    • 2008
  • The gene SfXyn10, which encodes a protease-resistant xylanase, was isolated using colony PCR screening from a genomic library of a feather-degrading bacterial strain Streptomyces fradiae var. k11. The full-length gene consists of 1,437bp and encodes 479 amino acids, which includes 41 residues of a putative signal peptide at its N terminus. The amino acid sequence shares the highest similarity (80%) to the endo-1,4-${\beta}$-xylanase from Streptomyces coelicolor A3, which belongs to the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to homogeneity by acetone precipitation and anion-exchange chromatography, and subsequently characterized. The optimal pH and temperature for the purified recombinant enzyme were 7.8 and $60^{\circ}C$, respectively. The enzyme showed stability over a pH range of 4.0-10.0. The kinetic values on oat spelt xylan and birchwood xylan substrates were also determined. The enzyme activity was enhanced by $Fe^{2+}$ and strongly inhibited by $Hg^{2+}$ and SDS. The enzyme also showed resistance to neutral and alkaline proteases. Therefore, these characteristics suggest that SfXyn10 could be an important candidate for protease-resistant mechanistic research and has potential applications in the food industry, cotton scouring, and improving animal nutrition.

Effect of sous-vide cooking conditions on the physicochemical, microbiological and microstructural properties of duck breast meat

  • Dong-Min Shin;Jong Hyeok Yune;Dong-Hyun Kim;Sung Gu Han
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1596-1603
    • /
    • 2023
  • Objective: Sous-vide cooking offers several advantages for poultry meat, including enhanced tenderness, reduced cooking loss, and improved product yield. However, in duck meat, there are challenges associated with using the sous-vide method. The prolonged cooking time at low temperatures can lead to unstable microbial and oxidative stabilities. Thus, we aimed to assess how varying sous-vide cooking temperatures and durations affect the physicochemical and microbial characteristics of duck breast meat, with the goal of identifying an optimal cooking condition. Methods: Duck breast meat (Anas platyrhynchos) aged 42 days and with an average weight of 1,400±50 g, underwent cooking under various conditions (ranging from 50℃ to 80℃) for either 60 or 180 min. Then, physicochemical, microbial, and microstructural properties of the cooked duck breast meat were assessed. Results: Different cooking conditions affected the quality attributes of the meat. The cooking loss, lightness, yellowness, Hue angle, whiteness, and thiobarbituric acid reactive substance (TBARS) values of the duck breast meat increased with the increase in cooking temperature and time. In contrast, the redness and chroma values decreased with the increase in cooking temperature and time. Cooking of samples higher than 60℃ increased the volatile basic nitrogen contents and TBARS. Microbial analysis revealed the presence of Escherichia coli and Coliform only in the samples cooked at 50℃ and raw meat. Cooking at lower temperature and shorter time increased the tenderness of the meat. Microstructure analysis showed that the contraction of myofibrils and meat density increased upon increasing the cooking temperature and time. Conclusion: Our data indicate that the optimal sous-vide method for duck breast meat was cooking at 60℃ for 60 min. This temperature and time conditions showed good texture properties and microbial stability, and low level of TBARS of the duck breast meat.

Effects of Aging Methods and Periods on Quality Characteristics of Beef

  • Kim, SolJi;Kim, GwangHeun;Moon, Chan;Ko, KyoungBo;Choi, YoungMin;Choe, JeeHwan;Ryu, YounChul
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.953-967
    • /
    • 2022
  • The objective of this study was to determine effects of aging methods (wet-aged, dry-aged, and packaged dry-aged) during 60 d on quality traits and microbial characteristics of beef. Wet-aged beef was packed by vacuum packaging and stored in a 4℃ refrigerator. Dry-aged beef was used without packaging. Packaged dry-aged beef was packaged in commercial bags. Dry-aged and packaged dry-aged samples were stored in a meat ager at 2℃-4℃ with 85%-90% relative humidity. Meat color, crust thickness, aging loss, cooking loss, Warner-Bratzler shear force (WBSF), texture profile analysis, Torrymeter, meat pH, water activity, volatile basic nitrogen (VBN), thiobarbituric acid reactant substances (TBARS), and microbial analysis were measured or performed every 15 d until 60 d of aging time. Meat color changed significantly with increasing aging time. Differences in meat color among aging methods were observed. Aging losses of dry-aged and packaged dry-aged samples were higher than those of wet-aged samples. Wet-aged beef showed higher cooking loss, but lower WBSF than dry-aged and packaged dry-aged beef. VBN and TBARS showed an increasing tendency with increasing aging time. Differences of VBN and TBARS among aging methods were found. Regarding microbial analysis, counts of yeasts and molds were different among aging methods at the initial aging time. Packaged dry-aged and dry-aged beef showed similar values or tendency. Significant changes occurred during aging in all aging methods. Packaged dry aging and dry aging could result in similar quality traits and microbial characteristics of beef.