• Title/Summary/Keyword: Microarray probe design

Search Result 4, Processing Time 0.018 seconds

A Probe Design Method for DNA Microarrays Using ${\epsilon}$-Multiobjetive Evolutionary Algorithms (${\epsilon}$-다중목적 진화연산을 이용한 DNA Microarray Probe 설계)

  • Cho Young-Min;Shin Soo-Yong;Lee In-Hee;Zhang Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.82-84
    • /
    • 2006
  • 최근의 생물학적인 연구에 DNA microarray가 널리 쓰이고 있기 때문에, 이러한 DNA microarray를 구성하는데 필요한 probe design 작업의 중요성이 점차 커져가고 있다. 이 논문에서는 probe design 문제를 thermodynamic fitness function이 2개인 multi-objective optimization 작업으로 변환한 뒤, ${\epsilon}$-multiobjective evolutionary algorithm을 이용하여 probe set을 찾는다. 또한, probe 탐색공간의 크기를 줄이기 위하여 각 DNA sequence의 primer 영역을 찾는 작업을 진행하며, 사용자가 직접 프로그램을 테스트할 수 있는 웹사이트를 제공한다. 실험 대상으로는 mycoides를 선택하였으며, 이 논문에서 제안된 방법을 사용하여 성공적으로 probe set을 발견할 수 있었다.

  • PDF

Microarray Probe Design with Multiobjective Evolutionary Algorithm (다중목적함수 진화 알고리즘을 이용한 마이크로어레이 프로브 디자인)

  • Lee, In-Hee;Shin, Soo-Yong;Cho, Young-Min;Yang, Kyung-Ae;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.501-511
    • /
    • 2008
  • Probe design is one of the essential tasks in successful DNA microarray experiments. The requirements for probes vary as the purpose or type of microarray experiments. In general, most previous works use the simple filtering approach with the fixed threshold value for each requirement. Here, we formulate the probe design as a multiobjective optimization problem with the two objectives and solve it using ${\epsilon}$-multiobjective evolutionary algorithm. The suggested approach was applied in designing probes for 19 types of Human Papillomavirus and 52 genes in Arabidopsis Calmodulin multigene family and successfully produced more target specific probes compared to well known probe design tools such as OligoArray and OligoWiz.

Development of DNA Microarray for Pathogen Detection

  • Yoo, Seung Min;Keum, Ki Chang;Yoo, So Young;Choi, Jun Yong;Chang, Kyung Hee;Yoo, Nae Choon;Yoo, Won Min;Kim, June Myung;Lee, Duke;Lee, Sang Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.93-99
    • /
    • 2004
  • Pathogens pose a significant threat to humans, animals, and plants. Consequently, a considerable effort has been devoted to developing rapid, convenient, and accurate assays for the detection of these unfavorable organisms. Recently, DNA-microarray based technology is receiving much attention as a powerful tool for pathogen detection. After the target gene is first selected for the unique identification of microorganisms, species-specific probes are designed through bioinformatic analysis of the sequences, which uses the info rmation present in the databases. DNA samples, which were obtained from reference and/or clinical isolates, are properly processed and hybridized with species-specific probes that are immobilized on the surface of the microarray for fluorescent detection. In this study, we review the methods and strategies for the development of DNA microarray for pathogen detection, with the focus on probe design.

Design, Optimization and Validation of Genomic DNA Microarrays for Examining the Clostridium acetobutylicum Transcriptome

  • Alsaker, Keith V.;Paredes, Carlos J.;Papoutsakis, Eleftherios T.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.432-443
    • /
    • 2005
  • Microarray technology has contributed Significantly to the understanding of bacterial genetics and transcriptional regulation. One neglected aspect of this technology has been optimization of microarray-generated signals and quality of generated information. Full genome microarrays were developed for Clostridium acetobutylicum through spotting of PCR products that were designed with minimal homology with all other genes within the genome. Using statistical analyses it is demonstrated that Signal quality is significantly improved by increasing the hybridization volume. possibly increasing the effective number of transcripts available to bind to a given spot, while changes in labeled probe amounts were found to be less sensitive to improving signal quality. In addition to Q-RT-PCR, array validation was tested by examining the transcriptional program of a mutant (M5) strain lacking the pSOL1 178-gene megaplasmid relative to the wildtype (WT) strain. Under optimal conditions, it is demonstrated that the fraction of false positive genes is 1% when considering differentially expressed genes and 7% when considering all genes with signal above background. To enhance genomic-scale understanding of organismal physiology, using data from these microarrays we estimated that $40{\sim}55%$ of the C. acetobutylicum genome is expressed at any time during batch culture, similar to estimates made for Bacillus subtilis.