• Title/Summary/Keyword: Microarchitecture

Search Result 47, Processing Time 0.028 seconds

Microarchitecture Simulator for On-Chip Multiprocessor Microprocessor (다중처리형 마이크로프로세서 미세구조 시뮬레이터)

  • Park, Kyoung;Hahn, Woo-Jong
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.408-411
    • /
    • 1999
  • Microarchitecture simulator is an important tool to verify and optimize the microarchitecture of a new microprocessor. Moreover. it can be use as a performance simulator to estimate the target microprocessor′s performance. And system software designers can use it as a software developing environment. This paper describes a "microarchitecture simulator for on-chip Multiprocessor microprocessor". It is a program-driven and cycle-based simulator that can execute simultaneous mutithreading benchmarks. We verified the microarchitecture of a new on-chip multiprocessor microprocessor with it and did performance simulations to estimate the performance of the on-chip multiprocessor microprocessor.

  • PDF

Performance Comparison between LLVM and GCC Compilers for the AE32000 Embedded Processor

  • Park, Chanhyun;Han, Miseon;Lee, Hokyoon;Cho, Myeongjin;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2014
  • The embedded processor market has grown rapidly and consistently with the appearance of mobile devices. In an embedded system, the power consumption and execution time are important factors affecting the performance. The system performance is determined by both hardware and software. Although the hardware architecture is high-end, the software runs slowly due to the low quality of codes. This study compared the performance of two major compilers, LLVM and GCC on a32-bit EISC embedded processor. The dynamic instructions and static code sizes were evaluated from these compilers with the EEMBC benchmarks.LLVM generally performed better in the ALU intensive benchmarks, whereas GCC produced a better register allocation and jump optimization. The dynamic instruction count and static code of GCCwere on average 8% and 7% lower than those of LLVM, respectively.

Cost Effective Value Prediction Microarchitecture using Partial-Tag and Narrow-Width Operands (부분 태그와 작은 데이터 크기에 기반한 저비용 연산결과 예측기 구조)

  • 최병수;이동익
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.265-268
    • /
    • 2001
  • In this paper we investigate the implementation cost of value prediction methods for high performance micro-processors, and propose a new value prediction microarchitecture with low cost. After simulation, we found that the proposed microarchitecture can decrease the implementation cost by 36% to 50% and with slight performance degradation (less than 5%) .

  • PDF

Classification and visualization of primary trabecular bone in lumbar vertebrae

  • Basaruddin, Khairul Salleh;Omori, Junya;Takano, Naoki;Nakano, Takayoshi
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.111-126
    • /
    • 2014
  • The microarchitecture of trabecular bone plays a significant role in mechanical strength due to its load-bearing capability. However, the complexity of trabecular microarchitecture hinders the evaluation of its morphological characteristics. We therefore propose a new classification method based on static multiscale theory and dynamic finite element method (FEM) analysis to visualize a three-dimensional (3D) trabecular network for investigating the influence of trabecular microarchitecture on load-bearing capability. This method is applied to human vertebral trabecular bone images obtained by micro-computed tomography (micro-CT) through which primary trabecular bone is successfully visualized and extracted from a highly complicated microarchitecture. The morphological features were then analyzed by viewing the percolation of load pathways in the primary trabecular bone by using the stress wave propagation method analyzed under impact loading. We demonstrate that the present method is effective for describing the morphology of trabecular bone and has the potential for morphometric measurement applications.

Bone Microarchitecture at the Femoral Attachment of the Posterior Cruciate Ligament (PCL) by Texture Analysis of Magnetic Resonance Imaging (MRI) in Patients with PCL Injury: an Indirect Reflection of Ligament Integrity

  • Kim, Hwan;Shin, YiRang;Kim, Sung-Hwan;Lee, Young Han
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • Purpose: (1) To evaluate the trabecular pattern at the femoral attachment of the posterior cruciate ligament (PCL) in patients with a PCL injury; (2) to analyze bone microarchitecture by applying gray level co-occurrence matrix (GLCM)-based texture analysis; and (3) to determine if there is a significant relationship between bone microarchitecture and posterior instability. Materials and Methods: The study included 96 patients with PCL tears. Trabecular patterns were evaluated on T2-weighted MRI qualitatively, and were evaluated by GLCM texture analysis quantitatively. The grades of posterior drawer test (PDT) and the degrees of posterior displacement on stress radiographs were recorded. The 96 patients were classified into two groups: acute and chronic injury. And 27 patients with no PCL injury were enrolled for control. Pearson's correlation coefficient and one-way ANOVA with Bonferroni test were conducted for statistical analyses. This protocol was approved by the Institutional Review Board. Results: A thick and anisotropic trabecular bone pattern was apparent in normal or acute injury (n = 57/61;93.4%), but was not prominent in chronic injury and posterior instability (n = 31/35;88.6%). Grades of PDT and degrees of posterior displacement on stress radiograph were not correlated with texture parameters. However, the texture analysis parameters of chronic injury were significantly different from those of acute injury and control groups (P < 0.05). Conclusion: The trabecular pattern and texture analysis parameters are useful in predicting posterior instability in patients with PCL injury. Evaluation of the bone microarchitecture resulting from altered biomechanics could advance the understanding of PCL function and improve the detection of PCL injury.

Longitudinal Tracking of Alteration Pattern on Trabecular Bone Microarchitecture at Tibial Epiphysis Induced by Post Traumatic Osteoarthritis Over Time (외상성 관절염 진행에 따른 경골 골단 해면골에서의 골 미세구조 변화 패턴 추적 관찰)

  • Lee, Joo-Hyung;Chun, Keyoung-Jin;Lee, Kwon-Young;Kim, Dae-Jun;Kim, Han-Sung;Lim, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.11
    • /
    • pp.1081-1090
    • /
    • 2012
  • This study aims to track the longitudinal alteration pattern on the trabecular bone microarchitecture at tibial epiphysis induced by T-OA over time using in vivo micro computed tomography (${\mu}CT$). Ten SD rats were divided into control (n = 5) and T-OA (n = 5) groups. Anterior cruciate ligament transaction was performed for the T-OA group. The results showed that the alteration pattern on the trabecular bone microarchitecture at tibial epiphysis in the T.OA group was definitely different compared with that in the CON group from 0 to 8 weeks (approximately 4-16%, P > 0.05). In particular, a difference was observed in the bone formation and density distributions over time (from 0 or 4 to 8 weeks; approximately 5.15%, P < 0.05). An improved understanding of the alteration pattern on the trabecular bone microarchitecture at tibial epiphysis may assist in developing more targeted treatment interventions for T-OA.

A Possible Physiological Role of Caspase-11 During Germinal Center Reaction

  • Kang, Shin-Jung
    • Animal cells and systems
    • /
    • v.12 no.3
    • /
    • pp.127-136
    • /
    • 2008
  • Caspase-11 has been known as a dual regulator of cytokine maturation and apoptosis. Although the role of caspase-11 under pathological conditions has been well documented, its physiological role has not been studied much. In the present study, we investigated a possible physiological function of caspase-11 during immune response. In the absence of caspase-11, immunized spleen displayed increased cellularity and abnormal germinal center structure with disrupted microarchitecture. The rate of cell proliferation and apoptosis in the immunized spleen was not changed in the caspase-11-deficient mice. Furthermore, the caspase-11-deficient peritoneal macrophages showed normal phagocytotic activity. However, caspase-11-/-splenocytes and macrophages showed defective migrating capacity. The dysregulation of cell migration did not seem to be mediated by caspase-3, interleukin-$1{\alpha}$ or interleukin-$1{\beta}$ which acts downstream of caspase-11. These results suggest that a direct regulation of immune cell migration by caspase-11 is critical for the formation of germinal center microarchitecture during immune response. However, humoral immunity in the caspase-11-deficient mice was normal, suggesting the formation of germinal center structure is not essential for the affinity maturation of the antibodies.

Getting Feedback on a Compiler's Optimization Decisions, Enabling More Code-Optimization Opportunities

  • Min, Gyeong Il;Park, Sewon;Han, Miseon;Kim, Seon Wook
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.450-454
    • /
    • 2015
  • Short execution time is the major performance factor for computer systems. This performance factor is directly determined by code quality, which is influenced by the compiler's optimizations. However, a compiler has limitations when optimizing source code due to insufficient information. Thus, if programmers can learn the reasons why a compiler fails to apply optimizations, they can rewrite code that is more easily understood by the compiler, and thus improve performance. In this paper, we propose a compiler that provides a programmer with reasons for failed optimization and recognizes programmer's additional information to obtain better optimization. As a result, we obtain performance improvement, i.e., reducing execution time and code size, by taking advantage of additional optimization opportunities.

Alteration of Trabecular Bone Microarchitecure at Tibial Epiphysis due to Knee Joint Instability by Anterior Cruciate Ligament Rupture: Difference between Medial and Lateral Part (전방십자인대 손상으로 인한 슬관절 불안정성에 따른 경골 골단 해면골 미세구조 변화 : 내방과 외방에서의 해면골 미세구조 패턴 변화)

  • Lee, Joo-Hyung;Chun, Keyoung-Jin;Kim, Han-Sung;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.78-88
    • /
    • 2012
  • Knee joint instability by anterior cruciate ligament(ACL) rupture is allowing the abnormal loading condition at the tibial epiphysis locally, resulting in producing locally different bone bruise. The study examined difference between local alteration patterns of trabecular bone microarchitecture at medial and lateral parts of the tibial epiphysis by ACL rupture. Fourteen SD rats were divided into Control(CON; n = 7) and Anterior Cruciate Ligament Transection(ACLT; n = 7) groups. The tibial joints were then scanned by in vivo ${\mu}$-CT at 0, 4, and 8 weeks post-surgery. The results showed that alteration pattern on trabecular bone microarchitecture at medial part was significantly higher than that at lateral part of the tibial epiphysis in ACLT group from 0 to 8 weeks(P < 0.05). Tb.Th and Tb.Sp distributions were well corresponded with differences between aforementioned trabecular bone microarchitectural alteration pattens at medial and lateral parts of the tibial epiphysis in ACLT group from 0 to 8 weeks(P < 0.05). These findings suggest that the alteration patterns of trabecular bone microarchitecture should be locally and periodically considered, particularly with respect to the prediction of bone fracture risk by ACL rupture. Improved understanding of the alteration patterns at medial and lateral trabecular bone microarchitectures at the tibial epiphysis may assist in developing more targeted treatment interventions for knee joint instability secondary to ACL rupture.

Longitudinal Alterations of Microarchitecture and Mineralization Distribution on Trabecular Bone Due to Metastatic Bone Tumor (전이성 골암에 의한 해면골의 미세구조와 골화 분포 변화)

  • Park, Sun-Wook;Jeon, Ok-Hee;Ko, Chang-Yong;Kim, Chi-Hyun;Kim, Han-Sung;Chun, Keyoung-Jin;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.5
    • /
    • pp.444-451
    • /
    • 2009
  • Purpose: The aim of present study is to detect longitudinal alterations of mechanical characteristic determined by bone quality (microarchitecture and degree of mineralization) on femur trabecular bone due to metastatic bone tumor Materials and Methods: Each 6 female SD rats (12 weeks old, approximate 250g) were allocated in SHAM and TUMOR Group. W256 (Walker carcinosarcoma 256 malignant breast cancer cell) was injected into the right femur (intraosseous injection) in TUMOR Group, whereas 0.9% NaCl (saline solution) was injected in SHAM Group. The right hind limbs of all rats were scanned by in-vivo micro-CT to acquire structural parameters, bone mineral density, X-ray attenuation and bone mineralization distribution at 0 week and 4 weeks after surgery. Results: BMD, BV/TV and Tb.N of trabecular bone in TUMOR group were markedly decreased (26%, 11% and 23%) while those in SHAM group were significantly increased (34%, 48% and 11%) (p<0.05). BS/BV, Tb.Sp and SMI in TUMOR group were significantly increased (-16%, 38% and 2%) compared with those in SHAM group (-33%, 12% and -16%) (p<0.05). Additionally, bone mineralization in TUMOR group significantly decreased while those in SHAM group was significantly increased (p<0.05). Conclusion: It is identified that how much bone microarchitecture and mineralization are diminished due to the metastatic bone tumor. The results may be helpful to prediction of fracture risk by metastatic bone tumor.