• Title/Summary/Keyword: Microalgae growth rate

Search Result 112, Processing Time 0.024 seconds

Selection of Suitable Species of Chlorella, Nannochloris, and Nannochloropsis in High- and Low-Temperature Seasons for Mass Culture of the Rotifer Brachionus plicatilis

  • Bae, Jean-Hee;Hur, Sung-Bum
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.323-332
    • /
    • 2011
  • To find seasonally optimal microalgae for mass culture of the rotifer Brachionus plicatilis, the growth rates of 12 microalgal species (two marine Chlorella spp., five marine Nannochloris spp., two marine Nannochloropsis spp., one estuarine Nannochloropsis sp., and two estuarine Chlorella spp.) were compared at $25^{\circ}C$ at 15 psu and 30 psu. Among these, six species showing high growth rates were chosen and examined again at high ($30^{\circ}C$ and $32^{\circ}C$) and low ($10^{\circ}C$) temperatures. Their amino and fatty acids and the dietary value of the rotifers that fed on each microalgal species were examined. Nannochloris sp. (KMMCC-119) and Chlorella vulgaris (KMMCC-120) showed the highest growth rates at temperatures over $30^{\circ}C$ and at $10^{\circ}C$, respectively. The growth rate of Nannochloris was higher than those of Chlorella and Nannochloropsis at high temperatures, but lower than those of the latter at low temperatures. The growth rate of rotifers fed on Nannochloropsis was highest and that of those fed on Chlorella was lowest. Levels of eicosapentaenoic acid and docosahexaenoic acid were highest in Nannochloropsis and lowest in Nannochloris. However, total amino acid content was highest in Nannochloris and lowest in Chlorella. In conclusion, Nannochloropsis sp. (KMMCC-33) was the best microalgal species for the mass culture of the rotifer. However, during high- or low-temperature seasons in which Nannochloropsis does not grow well, Nannochloris spp. (KMMCC-119, 395) and C. vulgaris (KMMCC-120) would adequately replace Nannochloropsis sp. (KMMCC-33).

Changes in the Growth and Biochemical Composition of Nannochloropsis sp. Cultures Using Light-Emitting Diodes (LED (Light Emitting Diode)를 이용한 Nannochloropsis sp.의 성장 및 생화학적 조성 변화)

  • Park, Jin-Chul;Kwon, O-Nam;Hong, Sung-Eic;An, Heui-Chun;Bae, Jea-Hyun;Park, Mi-Sun;Park, Heum-Gi
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.3
    • /
    • pp.259-265
    • /
    • 2013
  • The marine microalgae Nannochloropsis sp. was cultured under a metal halide lamp (MH) or light-emitting diodes (LEDs) of various wavelengths (blue, LB; red, LR; yellow, LY; green, LG; white, LW); changes in growth, total carotenoid, chlorophyll a, amino acid and fatty acid profiles were investigated. LB-exposed cultures exhibited the highest specific growth rate (SGR) (0.32), whereas LY-exposed cultures showed the lowest SGR (0.18). After cultivation for 9 days, the maximum dry cell weight (g/L) of LB-exposed cultures was significantly higher than that of those exposed to other light conditions (LB>MH>LW$${\geq_-}LG{\geq_-}$$LR>LY). The essential amino acid (EAA, %) contents of cultures exposed to LG, LB, LR and MH were higher than those exposed to LY and LW (P<0.05). Eicosapentaenoic acid and n-3 highly unsaturated fatty acid levels were significantly higher in MH-exposed cultures compared to those exposed to LY (P<0.05), with no marked difference compared to those exposed to LB, LG, LR and LW (P>0.05). The total carotenoid content was highest in LR-exposed cultures (18.0 mg/L), whereas MH showed the lowest (11.8 mg/L; P<0.05). Chlorophyll a content was highest in cultures exposed to LR compared to other light sources. These results suggest consistent differences in growth and biochemical composition after exposure to light of different wavelengths.

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

Effect of Light Quality on Growth and Fatty Acid Production in Chlorella vugaris Using Light Emitting Diodes (발광다이오드를 이용한 광파장에 따른 Chlorella vulgaris의 생장과 지방산 생산에 미치는 효과)

  • Kim, Z-Hun;Kim, Dong Keun;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.24-29
    • /
    • 2016
  • Microalgae are considered as superior biodiesel producers, because they could effectively produce high amount of lipid with fast growth rate. In this study, Chlorella vulgaris was exposed to various light wavelengths (${\lambda}_{max}$ 470 nm, ${\lambda}_{max}$ 525 nm, and ${\lambda}_{max}$ 660 nm) using light emitting diodes (LEDs) to examine effect of light quality on their growth and fatty acid production in 0.4-L bubble column photobioreactors. Fluorescent lamps were also used as polychromatic light sources (control). From the results, biomass productivity was varied by light wavelength from 0.05 g/L/day to 0.30 g/L/day. Maximum biomass productivity was obtained from red LED among tested ones. We also observed that contents of oleic acid and linolenic acid, which affect biodiesel properties, were significantly changed depending on supplied wavelength. These results indicated that production of algal biomass, and fatty acid content and productivity could be improved or controlled by supplying specific light wavelength.

The Behavior of a $CO_2$Fixation Process by Euglena Gracilis Z with a Photobioreactor (광반응기와 Euglena gracilis Z를 이용한 이산화탄소 고정화 공정의 거동 특성)

  • 신항식;채소용;황응주;임재림;남세용
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.644-648
    • /
    • 2000
  • Biological fixation of carbon dioxide using microalgae is known as an effective CO$_2$reduction technology. However, many environmental factors influence microalgal productivity. Optimal cultivation factors were determined for the green alga, Euglena gracilis Z, which offers high protein and vitamin E content for animal fodder. In batch culture in a photovioreactor, it was found that theinitial pH, temperature, CO$_2$concentration in air, and light intensity during the optimal cultivating conditions were 3.5, 27$^{\circ}C$, 5-10% and 520 ${\mu}$mol/㎡/s, respectively. When tap water and freshwater were used as cultivating media unsterilized tap water was found to be effective. A kinetic model was considered to determine the relationship between the specific growth rate and the light intensity. The half-velocity coefficient (K(sub)I) in the Monod model under photoautotrophic conditions was 978.9 ${\mu}$mol/㎡/s.

  • PDF

Impact of SV40 T antigen on two multiple fission microalgae species Scenedesmus quadricauda and Chlorella vulgaris

  • Gomaa, Ahmed E.;Yang, Seung Hwan
    • International journal of advanced smart convergence
    • /
    • v.7 no.1
    • /
    • pp.48-63
    • /
    • 2018
  • The combination of Simian Virus40 (SV40)'s large T antigen with its replication origin is commonly used in molecular studies to enhance the expression of heterogeneous genes through multiplying the plasmid copy number. There are no reports related to the impact of the SV40 T antigen on plant, multiple fissional, cell-type. This study explores the response of two multiple-fission microalgal cells, Scenedesmus quadricauda and Chlorella vulgaris, to the expression of the T-antigen, with aim of applying SV40 T-antigen to increase the expression efficiency of foreign genes in the two species. Different levels of low-expression have been constructed to control the expression of SV40 T antigen using three heterogenous promoters (NOS, CaMV35S, and CMV). Chlorella cultures showed slowdown in the growth rate for samples harboring the T antigen under the control of CaMV35S and CMV promoters, unlike Scenedesmus cultures which showed no significant difference between samples and could have silenced the expression.

Effect of Liquid Circulation Velocity and Cell Density on the Growth of Parietochloris incisa in Flat Plate Photobioreactors

  • Changhai Wang;Yingying Sun;Ronglian Xing;Liqin Sun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.103-108
    • /
    • 2005
  • For more accurately describing the durations of the light and the dark phases of micro-algal cells over the whole light-dark cycle, and probing into the relationship between the liquid circulation time or velocity, the aeration rate and cell density, a series of experiments was carried out in 10 cm light-path flat plate photobioreactors. The results indicated that the liquid flow in the flat plate photobioreactor could be described by liquid dynamic equations, and a high biomass output, higher content and productivity of arachidonic acid, $70.10\;gm^{-2}d^{-1},\;9.62\%$ and 510.3 mg/L, respectively, were obtained under the optimal culture conditions.

Screening and Characterization of Oleaginous Microalgal Species from Northern Xinjiang

  • Wu, Lei;Xu, Liangliang;Hu, Chunxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.6
    • /
    • pp.910-917
    • /
    • 2015
  • A total of 646 strains, including green algae and diatoms, were isolated from 220 samples to screen microalgae with high lipid productivity (LP). The samples were obtained from nine habitats in Northern Xinjiang, China in June 2013. This study initially identified eight lipidrich strains, namely, Desmodesmus intermedius XJ-498, D. intermedius XJ-145, D. intermedius XJ-99, Monoraphidium pusillum XJ-489, M. dybowskii XJ-435, M. dybowskii XJ-151, Mychonastes homosphaera XJ-488, and Podohedriella falcata XJ-176, based on 18S rDNA sequencing. The strains were cultured in a photobioreactor for the same period. Results showed that the specific growth rate (day-1) of M. pusillum XJ-489 was the highest (1.14 ± 0.06), and the biomass concentration (g/l) of D. intermedius XJ-99 was the highest (2.84 ± 0.3). Futhermore, the lipid content (%) of M. dybowskii XJ-151 was the highest (33.5 ± 4.38), and the lipid productivity (mg l-1 day-1) of My. homosphaera XJ-488 was the highest (86.41 ± 9.04). C16 to C18 accounted for 86% to 98% of the total lipid, and the biodiesel qualities of the selected algae corresponded to international standards. This study suggests that My. homosphaera XJ-488, D. intermedius XJ-99, and M. dybowskii XJ-151 are the most potential strains for biodiesel production among all the isolated strains.

Impact of salt stress on the α-tocopherol, carotenoid derivatives and flocculation efficiency of Euglena sp., Indonesian Strain

  • Ria Amelia;Arief Budiman;Andhika Puspito Nugroho;Eko Agus Suyono
    • Fisheries and Aquatic Sciences
    • /
    • v.27 no.6
    • /
    • pp.379-391
    • /
    • 2024
  • Tocopherol, carotenoids, and chlorophyll are the primary components of the antioxidative response in microalgae. Conditions of stress, such salt stress, can trigger the processes responsible for the accumulation of tocopherol and carotene. It has been found that the most difficult part of culturing microalgae is keeping it affordable. This study investigated the effects of different salt types and concentrations on the amount of α-tocopherol, carotenoid derivatives, and flocculation efficiency of Euglena sp. Cultures of Euglena sp. was developed under salt stress conditions of NaCl 200 mM and KCl 200 mM. UV-VIS spectrophotometry was used to confirm the presence of α-tocopherol and carotenoid derivatives under thirteen days of salt stress testing. Increasing salinity has a significant effect on Euglena sp., causing spherical cell morphologies with aspect ratio 1.385 ± 0.031 for NaCl 200 mM and 1.414 ± 0.040 for KCl 200 mM. Increasing salinity also slowing down development with specific growth rate value of 0.171 ± 0.006 per day and 0.122 ± 0.029 per day for NaCl and KCl 200 mM, respectively. Nevertheless, the amount of α-tocopherol in Euglena sp. increases with a high salt concentration; algal cells flocculated more successfully when increasing the salt concentrations (NaCl 200 mM and KCl 200 mM) was added. Due to the inhibition of photosynthetic activity in salt-stressed cells, the control group exhibited higher levels of carotenoid derivatives (ranging from 0.5-1 ㎍/mL) and pheophytin a and b (0.0062 ± 0.001 ㎍/mL and 0.0064 ± 0.001 ㎍/mL) than the group treated with salt stress. In conclusion, salt stress was an effective way to raises the concentration of α-tocopherol and significantly reduce the expense of harvesting Euglena sp.

Specific Growth Rates of Microalgae in Different Types of Model Photobioreactors (모형 배양조 형태에 따른 단세포 조류의 비증식속도)

  • KWAK Jung-Ki;KIM Hyun-Ju;LEE Ji-Hyun;SHIN Ga-Hee;CHO Man-Gi;HAN Bong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.4
    • /
    • pp.477-482
    • /
    • 1998
  • In the aquaculture industry, a photobioreactor (Pbr) with high productivity is a prerequisite for mass production of Chlorella sp., a feeding fry for Rotifer (Brachinous plicatilis). To enhance the productivity of Chlorella sp., model Pbrs such as Cylinder type, Spherical surface type, Half-spherical surface type, Plate type, Raceway pond type and Water-wheel type Pbr with different values of surface area exposed to light/culture volume (S/V) were manufactured, and the maximum specific growth rate (${\mu}_{max}$) and productivity of Chlorella vulgaris 211-11b at $25^{\circ}C$, pH 7.0 and 12,000 lux were compared each other. The ${\mu}_{max}$ and productivity were not proportional to S/V. Among the 6 model Pbrs, Half-spherical surface type Pbr showed the highest ${\mu}_{max}$ and productivity as 2.206 ($day^{-1}$) and 0.247($g^{{\ell}-1}day^{-1}$).

  • PDF